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L’interaction faible

◮ L’interaction faible se manifeste par exemple dans :
◮ la radioactivité β : n → p + e− + ν̄e
◮ la désintégration du muon : µ− → e−νµν̄e

◮ Elle a un couplage faible. Dans la théorie
ponctuelle de Fermi : Gfermi ∼ 10−5

◮ Le temps de vie typique est de l’ordre de 10−8s
(très long comparé à EM et forte)

◮ Comme dans QED et QCD, l’interaction faible est
transmise par l’échange d’une particule de spin 1

◮ Ces bosons sont les W± et Z 0 qui sont massifs :
MW = 80, 385 ± 0.015 GeV
MZ = 91, 1876 ± 0, 0021 GeV

◮ Dans les années 1930, Fermi développe sa théorie
des interactions faibles basées sur une interaction
ponctuelle à 4 points avec un couplage dont la
force est données par sa constante
GF = 1, 166 × 10−5GeV−2

◮ Il faudra attendre le début des années 1970, la
découverte des courants neutres et le caractère
renormalisable des théories de Yang-Mills, pour
arriver aux bosons W et Z et à l’unification des
interactions faible et électromagnétique
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Classification des interactions faibles

◮ Les interactions faibles avec changement de charge (courants chargés) sont
classifiées en fonction des particules mises en jeu

◮ Leptoniques : le W se couple uniquement à des leptons



Classification des interactions faibles

◮ Semi-leptoniques : le W se couple à des leptons d’un coté et à des quarks de
l’autre

◮ avec ∆S = 0 :

◮ avec ∆S = 1 :



Classification des interactions faibles

◮ Hadroniques : le W ne se couple qu’à des quarks
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Théorie de Fermi

◮ En 1934, Enrico Fermi a formulé sa théorie effective des interactions faibles
basée sur une approche appelée “algèbre de courants”

◮ Cette théorie relativiste (électrons, neutrinos... relativistes) est développée dans
le formalisme de l’équation de Dirac (manipulation de particules de spin 1/2)

◮ Analogie avec interaction
électromagnétique (QED)
Diffusion e-p :

M = (eūpγ
µup)
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(−eūeγµue)

p

e-

γ (q)

jµ(p)

jµ(e)

p

e-

γ (q)

jµ(p)

jµ(e)

◮ Interaction faible
désintégration β

M = GF (ūnγ
µup)(ūνeγµue)

◮ GF est la constante de couplage faible

◮ Notion de courant chargé
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Théorie de Fermi

◮ En 1958 (juste après la découverte de la violation de la parité dans les
interactions faibles), Feynman et Gell-Mann modifie la théorie de Fermi de la
façon suivante

◮ Introduction de γµ(1 − γ5) qui rend l’interaction faible invariante selon CP
◮ (1 − γ5)/2 qui sélectionne en fait automatiquement un neutrino gauche ou un

anti-neutrino droit...

◮ L’amplitude de la désintégration β précédente s’écrit :

M(n → pe+νe) =
4GF√

2

»

ūpγ
µ (1 − γ5)

2
un

– »

ūνeγµ
(1 − γ5)

2
ue

–

◮ Cette interaction mélange des termes vecteur (γµ) et vecteur-axial (γµγ5) d’où le
nom d’interaction V–A. On peut écrire l’amplitude précédente en introduisant la
notion de courant :

M =
4GF√

2
JµJ†

µ ou bien M =
4GF√

2
(JµV + JµA )(J†

µ V + J†
µ A)



Boson W massif

◮ L’interaction faible correspond t-elle à une force de contact, comme elle est
décrite dans la théorie effective de Fermi ?

◮ En QED, on a vu que l’interaction électromagnétique résulte de l’échange d’un
boson vecteur

◮ Pour les courants chargés de l’interaction faible, on introduit un boson massif de
spin 1

◮ Exemple pour la désintégration du muon : µ− → νµ e−ν̄e
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Boson W massif

◮ Le boson W est le médiateur de l’interaction faible par courant chargé :

Couplage du W aux leptons Propagateur du W

−igW
2
√

2
γµ(1 − γ5)

νl
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W −i

 

gµν− qµqν

M2
W

!

q2−M2
W

◮ C’est un boson de spin 1



Boson W massif
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Constante de couplage de l’interaction faible

◮ Dans la limite où q2 ≪ M2
W , ce qui correspond aux désintégrations β et du muon

qui nous intéressent pour l’instant, la constante de Fermi et la “vraie” constante
de couplage gW de l’interaction faible sont reliées par la relation :

GF =

√
2g2

W

8M2
W

= 1, 166 × 10−5GeV−2

◮ On trouve donc que gW = 0.65

◮ On peut alors comparer les couplages électromagnétiques et faibles :

αem =
e2

4π
=

1

137
et αW =

g2
W

4π
=

1

29

◮ La constante de couplage de l’interaction faible est intrinsèquement plus forte que
celle de l’interaction électromagnétique.

◮ C’est le facteur de suppression en E2/M2
W qui rend cette force faible
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Courants neutres

◮ La chambre à bulle “Gargamelle” est installée dans
un faisceau de neutrino produit par le PS au CERN
en 1971

◮ A cette époque, le modèle de
Salam-Glashow-Weinberg unifiant de l’interaction
électrofaible n’est qu’une théorie parmi d’autres :
ce modèle prédit notamment l’existence des
courants neutres, mais leur recherche n’est pas
une priorité au moment de la construction de
Gargamelle

◮ Mais à partir de 1970, la théorie électrofaible est
théoriquement confortée : t’Hooft montre qu’elle
est renormalisable, et le mécanisme de GIM qui
prédit un 4ème quark (quark c observé en 1974
seulement) explique pourquoi on a pas vu de
courant neutre jusqu’ici

◮ En 1973, observation de courants neutres
leptoniques (ν̄µ + e− → ν̄µ + e−) et hadroniques
(ν̄µ + nucleon→—νµ + hadrons)



Courants neutres

◮ Bien que découvert après (en 1973) la formulation de la théorie électrofaible, on
peut introduire dans la théorie de Fermi les courants neutres

◮ En rajoutant les termes suivants aux courants
leptoniques :
ūνµ

γµ(1 − γ5)uνµ

ūeγµ(gV − gAγ
5)ue

◮ Expérimentalement, on mesure :

gV = 0, 040 ± 0, 015

gA = −0, 507 ± 0.014

◮ L’électron a un couplage neutre quasiment
purement axial

νµ νµ

e- e-

νµ νµ

e- e-



Boson Z 0 massif

◮ Le boson Z 0 est le médiateur de l’interaction faible par courant neutre :

Couplage du Z 0 aux fermions Propagateur du Z 0

−igZ
2
√

2
γµ(CV − CAγ

5)

f

f

Z0

f

f

Z0

−i

 

gµν− qµqν

M2
Z

!

q2−M2
Z

◮ C’est un boson de spin 1

◮ Avec :

CV = IW
3 (f ) − 2 sin2 θW Q(f )

CA = IW
3 (f )
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Angle de Cabibbo

◮ Au début des années 1960, on mesure les propriétés des particules étranges
et des désintégrations par interaction faible (courants chargés)
Exemple :

K +(s̄u) → µ+νµ

π+(ud̄) → µ+νµ

◮ Pour la désintégration du kaon : ∆S = 1
Pour la désintégration du pion : ∆S = 0

◮ Les études expérimentales montrent alors que les désintégrations par interaction
faible avec ∆S = 1 sont ∼ 1/20 fois plus faibles que celles de type ∆S = 0 :

Γ(K + → µ+νµ)

Γ(π+ → µ+νµ)
∼ 20

◮ En 1963, Cabibbo explique cette observation en autorisant le quark u à se
coupler non seulement au quark d mais également au quark s

„

u
d

«

→
„

u′

d ′

«

=

„

u
d cos θc + s sin θc

«

où θc est l’angle de mélange de Cabibbo



Angle de Cabibbo
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W+

s

∝ cos θc ∝ sin θc

◮ Le couplage Wud est proportionnel à cos θc et le couplage Wus à sin θc

Γ(K + → µ+νµ)

Γ(π+ → µ+νµ)
∼ sin2 θc

cos2θc

et pour θc = 13, 1◦, on a bien tan2θc = 1/20



Angle de Cabibbo

◮ L’angle de Cabibbo résout des problèmes. Les courants hadroniques deviennent :

Jµh = ūγµ
(1 + γ5)

2
(d cos θc + s sin θc)

◮ mais il introduit d’autres problèmes

◮ Le rapport d’embranchement de K 0(ds̄) → µ+µ− vaut 9, 1 × 10−9

◮ Le taux prédit est proportionnel à sin θc cos θc , ce qui donne un résultat très
largement supérieur aux résultats expérimentaux

◮ En 1970, Glashow, Iliopoulos et Maiani (GIM) proposent une solution qui introduit
un nouveau quark : le quark c

W

W

d

s

µ-

µ+
νµu

W

W

d

s

µ-

µ+
νµu

W

W

d

s

µ-

µ+
νµc

W

W

d

s

µ-

µ+
νµc

◮ Ce nouveau diagramme entraine une annulation des amplitudes (partiellement
car les quarks u et c ont une masse différente)

◮ En 1974, le quark c est découvert (méson J/ψ)



Mécanisme de GIM

◮ Contrairement aux courants chargés où l’on peut avoir ∆S = 0 où ∆S = 1, il y a
conservation de la saveur dans toutes les courants neutres observés jusqu’à
présent

◮ On dit qu’il n’existe pas de “Flavor Changing Neutral Current” (FCNC)

◮ Considérons les quarks u, d, s, le couplage par courants neutres a la forme :

uū + d ′d̄ ′ = uū + dd̄ cos2 θC + ss̄ sin2 θC +(s̄d + sd̄) sin θC cos θC
|∆S| = 0 |∆S| = 1

◮ Le 2ème terme avec |∆S = 1| n’est pas observé

◮ Dans le mécanisme de GIM introduit en 1970, on a un nouveau quark, le charme,
qui forme un doublet d’isospin faible

„

c
s

«

→
„

c′

s′

«

=

„

c
s cos θc − d sin θc

«

◮ Le courant neutre a alors 2 nouvelles contributions :

cc̄ + s′s̄′ = cc̄ + ss̄ cos2 θC + dd̄ sin2 θC −(s̄d + sd̄) sin θC cos θC
|∆S| = 0 |∆S| = 1

◮ Les 2 termes avec |∆S = 1| s’annulent automatiquement
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Matrice CKM

◮ La matrice de Cabibbo-Kobayashi-Maskawa (CKM) généralise ces mélanges
entre famille de quarks. Cette matrice est unitaire

◮ Les mesures des éléments de cette matrice ont été ou sont en train d’être
effectuées par de très nombreuses expériences

MCKM =

0

@

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

1

A =

0

@

0, 97428 0, 2253 0, 00347
0, 2252 0, 97345 0, 0410
0, 00862 0, 0403 0, 999152

1

A

0

@

d ′

s′

b′

1

A = MCKM

0

@

d
s
b

1

A

◮ et on remplace d,s,b par d’,s’,b’. Le courant faible devient :

Jµ =
`

ūc̄t̄
´ γµ(1 − γ5)

2
MCKM

0

@

d
s
b

1

A

◮ Exemple :
„

u
d ′

«

=

„

u
Vud d + Vuss + Vubb

«



Matrice CKM

◮ On utilise une des 6 conditions d’unitarité :

Vud V∗
ub + Vcd V∗

cb + Vtd V∗
tb = 0

◮ Mesures des éléments de la matrice CKM :
◮ Vud : Comparaison de π+ → π0e+νe et µ+ → e+νeν̄µ
◮ Vus : Comparaison de π+ → π0e+νe et K + → e+νe ν̄µ
◮ Vub : Désintégration b → ul+ν
◮ Vcd : Charme induit par neutrino à partir de quark d
◮ Vcs : Désintégration ave quark c du W
◮ Vcb : Désintégration B → D̄l+ν
◮ Vtb : Désintégration t → bl+ν

◮ Triangle d’unitarité :



Matrice CKM
◮ Paramétrisation de Wolfenstein : λ = sin θC

◮ Les paramètres A, ρ et η sont rééls
◮ La phase complexe est la seule source de violation de CP du modèle

standard. Mais cette violation de CP n’est pas très grande et ne peut pas
expliquer à elle seule l’asymétrie matière-antimatière de notre univers

MCKM =

0

@

1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

1

A



Problèmes avec le modèle de Fermi

◮ Problème d’unitarité :

Les sections efficaces de diffusion de neutrino augmente linéairement avec
√

s :
ceci viole les conditions d’unitarité à hautes énergie et le modèle de Fermi ne
marche plus pour E >∼ 700 GeV
Ceci peut être résolu en incorporant un boson W massif dans la théorie des
interactions faibles.
Mais les corrections d’ordre supérieur divergent

◮ Théorie non-renormalisable

◮ Unification des force électromagnétique et faible ?
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Le modèle électrofaible

◮ Glashow reconnait que les forces électromagnétique et faible, en
apparence très différentes, sont une manifestation d’une seule et même
force. Pour cela, il faut un boson massif pour que l’interaction faible soit
de faible portée

◮ Weinberg et Salam expliquèrent pourquoi le médiateur de la force
éléctromagnétique est sans masse alors que ceux de la force faible sont
massifs en utilisant le mécanisme de Higgs



Comment “cacher” la nature V–A des interactions faibles ?

−igW√
2

»

ūγµ
(1 − γ5)

2
u
–

=
−igW√

2
[ūγµuL]

avec

uL =
(1 − γ5)

2
u

γ5u =

„

0 1
1 0

«„

uA

uB

«

=

„

uB

uA

«

=

 

(~σ·p̂)
E+m uA
(~σ·p̂)
E−m uB

!

=

 

(~σ·p̂)
E+m 0
0 (~σ·p̂)

E−m

!

„

uA

uB

«

◮ Pour m=0, γ5 a le même effet que
l’opérateur d’hélicité Σ · p̂

◮ γ5 est l’opérateur de chiralité



Fermions chiraux

◮ On obtient :

uL =
(1 − γ5)

2
u =



0 si helicite= +1
u si helicite= −1

◮ De manière similaire :

uR =
(1 + γ5)

2
u =



u si helicite= +1
0 si helicite= −1

◮ Et pour les spineurs ajoints :

ūL = u†
Lγ

0 = u† (1 − γ5)

2
γ0 = u†γ0 (1 + γ5)

2
= ū

(1 + γ5)

2

ūR = ū
(1 − γ5)

2



Courants électromagnétique et faible

◮ On rappelle ici le courant électromagnétique :

jµEM ∼ ūγµu

◮ Et pour le courant faible :

jµW ∼ ūγµ (1−γ5)
2 u = ūγµ

(1 − γ5)

2
(1 − γ5)

2
u

= ū
(1 + γ5)

2
γµ

(1 − γ5)

2
u

= ūLγ
µuL

en utilisant
h

(1−γ5)
2

i2
= (1−γ5)

2

◮ Les courants chargés de l’interaction faible peuvent maintenant être vu
comme une interaction purement vecteur entre fermions gauches



Isospin faible

◮ La composante droite (R) de la particule et gauche (L) de l’anti-particule
n’interagissent pas par interaction faible

◮ On peut utiliser l’isospin faible IW pour classifier les particules élémentaires :
multiplets particules Y W IW IW3 Q

doublets
gauches

„

νe
e−

«

L

„

νµ

µ−

«

L

„

ντ

τ−

«

L
−1 1/2

„

1/2
−1/2

« „

0
−1

«

singlets
droits (e−)R (µ−)R (τ−)R −2 0 0 −1

doublets
gauches

„

u
d

«

L

„

c
s

«

L

„

t
b

«

L
1/3 1/2

„

1/2
−1/2

« „

2/3
−1/3

«

singlets (u)R (c)R (t)R 4/3 0 0 2/3
droits (d)R (s)R (b)R −2/3 0 0 −1/3

◮ L’hypercharge faible est définie selon : Q = IW
3 + Y W /2

◮ Dans la théorie électrofaible basée sur SU(2)L × U(1)Y , seuls les doublets avec
IW 6= 0 sont sensibles aux interactions faibles

◮ Attention : isospin faible est une symétrie de jauge locale (interaction de jauge)
alors que l’isospin fort est une symétrie de jauge globale



Retour sur le courant électromagnétique

◮ Le courant de QED peut être étendu à 4 composantes en utilisant u = uL + uR

jµEM ∼ ūγµu = (ūL + ūR)γµ(uL + uR)

= ūLγ
µuL + ūRγ

µuR + ūLγ
µuR + ūRγ

µuL

◮ Comme 1
2 (1 − γ5) 1

2 (1 + γ5) = 1
4 (1 − (γ5)2) = 0, les termes LR et RL sont nuls :

ūLγ
µuR = ū

(1 + γ5)

2
γµ

(1 + γ5)

2
u

= ūγµ
(1 − γ5)

2

(1 + γ5)

2
u

= 0

◮ Les seuls termes qui survivent sont donc :

jµEM ∼ ūγµu = ūLγ
µuL + ūRγ

µuR



Courants électromagnétiques et chargés faibles

◮ Les courants chargés faibles, dont le médiateur est le W±, couplent les
fermions gauches ensemble

j+µ = ν̄LγµeL

j−µ = ēLγµνL

W+

νe

e-

W+

νe

e-

W-

e-

νe

W-

e-

νe

◮ Le courant électromagnétique, dont le médiateur est le photon, couple
les fermions gauches ensemble, et les fermions droits ensemble

jEM
µ = −ēLγµeL − ēRγ

µeR

γ

e-

e-

γ

e-

e-



Introduction des doublets faibles

◮ Il semble maintenant naturel d’utiliser les doublets d’isospin faible puique
le W couple les leptons gauches et leur neutrino ensemble

◮ Définissons :

χL =

„

νe

e−

«

L

◮ Les courants chargés deviennent :

j±
µ

= χ̄Lγµτ
±

χL

avec

τ+ =

„

0 1
0 0

«

et τ− =

„

0 0
1 0

«



... et des courants neutres

◮ On complète la symétrie en introduisant une 3ème matrice τ 3 :

τ 3 =

„

1 0
0 −1

«

◮ On peut alors construire le courant suivant

j3
µ = χ̄Lγµ

1
2
τ 3χL

=
1
2
ν̄LγµνL −

1
2

ēLγµeL

◮ On obtient un courant neutre décrivant à la fois les interactions
électromagnétique et faible. Cependant, ce courant est V–A pur et
n’implique que des particules gauches

◮ Le boson Z 0 a une structure plus compliquée en γµ(CV − CAγ
5) et se

couple aussi aux fermions droits
◮ On définit alors le courant d’hypercharge faible

jY
µ = 2jEM

µ − 2j3
µ = −2ēRγµeR − ēLγµeL − ν̄LγµνL



Courants d’isospin et d’hypercharge faible

◮ Courant d’isospin faible : jµ = χ̄Lγµ~τχL

où j±µ correspond aux courants dont le médiateur est le W±, et j3
µ est le

courant neutre des fermions gauches
Dans le modèle de Salam-Glashow-Weinberg, jµ se couple à un triplet
de bosons vecteurs Wµ avec une force de couplage gW : −igW jµ · Wµ

◮ Courant d’hypercharge faible : jY
µ = 2jEM

µ − 2j3
µ

qui se couple à un singlet de boson Bµ avec une force de couplage
g′/2 : −i g′

2 jY
µBµ

◮ On vient d’introduire 4 bosons, W 1, W 2, W 3 et B, qui ne correspondent
pas aux bosons W +, W−, Z 0 et γ qui nous interesse



Où sont les bosons électrofaibles ?

◮ Pour la partie chargée, on peut montrer que :

jµ · Wµ = j1
µWµ1 + j2

µWµ2 + j3
µWµ3

=
1√
2

j+µWµ+ +
1√
2

j−µ Wµ− + j3
µWµ3

◮ On définit les bosons W + et W− comme :

W±
µ =

1√
2

“

W 1
µ ∓ iW 2

µ

”

◮ Les 2 états neutres W 3 et B se mélangent dans la théorie électrofaible
de GSW pour donner les champs du photon et du Z 0

„

Aµ
Zµ

«

=

„

cos θW sin θW

− sin θW cos θW

«„

Bµ
W 3
µ

«



L’angle de mélange faible

◮ De nombreux paramètres de la théorie des interactions électrofaibles sont reliés
les uns aux autres. Les masses et les couplages sont reliés par l’angle de
mélange faible (ou de Weinberg) θW

◮ Relation entre la masse du W et du Z 0 :

MW = MZ cos θW

◮ Relation entre le couplage au vertex du W et du Z 0 :

gW = gZ cos θW

◮ De plus, gW et gZ sont chacune reliée à la constante de couplage ge de QED :

gW =
ge

sin θW
gZ =

ge

sin θW cos θW

◮ Expérimentalement : sin2 θW (MZ ) = 0.23120



Le couplage du W

◮ De manière générale, le couplage électrofaible vaut :

−i
»

gW jµ · Wµ +
g′

2
jY
µBµ

–

◮ Dans lequel on peut isoler le couplage impliquant un W− :

−i
gW√

2
j−µ Wµ−

◮ avec,

j−µ = ēLγµνL

= ēγµ
(1 − γ5)

2
ν

◮ Le W− se couple à un électron (e) et un anti-neutrino électronique (ν̄e)
avec un couplage :

−igW

2
√

2
γµ(1 − γ5)



Courant électromagnétique

◮ Dans la partie impliquant des bosons neutres, on peut isoler les termes
impliquant Aµ qui représente le champ électromagnétique :

−i
»

gW sin θW j3µ +
g′

2
cos θW jYµ

–

Aµ = −ige

»

j3µ +
1

2
jYµ

–

Aµ

◮ En utilisant : ge = g′ cos θW = gW sin θW

◮ Et on retrouve donc bien notre courant (neutre) électromagnétique :

jEM
µ = j3µ +

1

2
jYµ



Courant neutre Z 0

◮ Dans cette partie impliquant des bosons neutres, on peut aussi isoler les termes
impliquant Zµ qui repésente le champ du boson Z 0 :

−i
»

gW cos θW j3µ − g′

2
sin θW jYµ

–

Zµ

= −i
h

gW cos θW j3µ − g′ sin θW (jEM
µ − j3µ)

i

Zµ

= −i
gW

cos θW

h

cos2 θW j3µ − sin2 θW (jEM − j3µ)
i

Zµ

= −i
gW

cos θW

h

j3µ − sin2 θW jEM
i

Zµ

◮ Et on trouve le courant neutre de l’interaction faible :

jNC
µ = j3µ − sin2 θW jEM



Courant neutre Z 0

◮ On peut maintenant revenir au couplage du Z 0 → f f̄ :

−i
gW

2 cos θW
γµ(CV − CAγ

5)

avec

CV = IW
3 (f ) − 2 sin2 θW Q(f )

CA = IW
3 (f )

◮

f CV CA

νL + 1
2 + 1

2
l− − 1

2 + 2 sin2 θW − 1
2

qu + 1
2 − 4

3 sin2 θW + 1
2

qd − 1
2 + 2

3 sin2 θW − 1
2
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Rappels sur l’invariance de jauge globale

◮ Une transformation de jauge agit sur la phase des fonctions d’onde

◮ Choisir une jauge, c’est définir une nouvelle phase

◮ Exemple : translation avec a un vecteur constant

r → r ′ = r + a

ψ → ψ′ = eip·aψ

La translation est une transformation qui déphase les fonctions d’onde d’une
même quantité en chaque point de l’espace temps

◮ Une transformation de jauge globale : c’est un déphasage constant des fonctions
d’onde

◮ On ne peut pas mesurer la phase absolue d’une fonction d’onde : ψ et ψ′

décrivent des états indiférenciables

◮ Déphaser d’une même quantité toutes les fonctions d’onde :
◮ C’est choisir sa jauge globale, et ce n’est associé à rien d’observable
◮ En d’autres termes, les lois physiques sont invariantes par translation (pour

cet exemple)



Rappels sur l’invariance de jauge locale

◮ Dans une transformation de jauge locale, on introduit une phase variable en
chaque point de l’espace temps :
Exemple : QED et le groupe U(1)

ψ(x) → eiα(x)ψ(x)

◮ En imposant l’invariance du lagrangien (L) sous les transformations de jauge
locale (les lois de la physique sont les mêmes à Paris et à Tokyo), on doit
introduire une dérivée covariante

Dµψ(x) → eiα(x)Dµψ(x) avec Dµ = ∂µ − ieAµ
où Aµ est un champ vectoriel qui se transforme comme :

Aµ → Aµ +
1

e
∂µα

En remplaçant ∂µ par Dµ, le lagrangien décrivant une particule libre :

Lfree = iψ̄γµ∂µψ − mψ̄ψ

devient :

LQED = iψ̄γµDµψ − mψ̄ψ

= iψ̄γµ∂µψ − mψ̄ψ + eψ̄γµψAµ
En imposant l’invariance par U(1), on a introduit un champ de jauge Aµ (vectoriel)
qui se couple aux fonctions d’onde ψ des particules

◮ Pour que Aµ puisse être associé au photon de QED, il faut ajouter au lagrangien
QED un terme dynamique (invariant de jauge) : − 1

4 FµνFµν avec
Fµν = ∂µAν − ∂νAµ



Reformulation de la théorie électrofaible

◮ Le modèle électrofaible repose sur l’invariance de jauge SU(2)L × U(1)Y

◮ On définit donc 2 transformations de jauge locale pour définir la
transformation d’un champ ψ

◮ Hypercharge faible : U(1)Y

ψ(x) → Vψ(x) avec V = eiα(x)

◮ Isospin faible : SU(2)L
„

ψ1
ψ2

«

L
→

„

ψ′
1

ψ′
2

«

L
= U

„

ψ1
ψ2

«

L
U transfo. de SU(2)

ψR → ψ′
R = ψR

◮ Pour préserver l’invariance de jauge, on introduit 2 champs de jauge :
Bµ : pour l’hypercharge faible Y W 1 champ pour U(1)Y

W k
µ : pour l’isopin faible IW 3 champs pour SU(2)L



Reformulation de la théorie électrofaible

◮ Les fermions interagissent avec les bosons de jauge :

Lψ = ψ̄R
`

iγµ∂µ − m − g′γµBµ
´

ψR

+ ψ̄L

„

iγµ∂µ − m − g′

2
γµBµ +

g

2
τ kγµW k

µ

«

ψL

◮ La partie dynamique des bosons de jauges est décrite par :

Ljauge = −1

4
BµνBµν − 1

4
W k
µνW kµν

avec

Bµν = ∂µBν − ∂νBµ (1)

W k
µν = ∂µW k

ν − ∂νW k
µ + gǫijk W i

µW j
ν (2)

Nouveau terme en (2) : interaction entre les bosons de jauge de SU(2)
( 6= QED, où le photon ne peut interagir avec lui-même car il est neutre)

◮ L’invariance de jauge impose que la masse des 4 bosons soient nulles
On pourrait rajouter “à la main” des termes de masse de la forme :

Lmasse =
1

2
M2

W W +
µ W +

µ +
1

2
M2

W W−
µ W−

µ +
1

2
M2

Z Z 0µZ 0
µ

Mais, ces termes de masse ne sont pas invariants par les transformations de
jauge. S’ils sont présents, on dit que la symétrie est brisée



Problème d’unitarité

◮ La section efficace de diffusion de paire de W (W +W− → W +W−) diverge
(σ → ∞) quand

√
s → ∞

WL WL

WL WL

WL WL

WL WL

WL

WL

WL

WL

γ,Z

WL

WL

WL

WL

γ,Z γ,Z

WL WL

WL WL

γ,Z

WL WL

WL WL

◮ On peut résoudre cette divergence en ajoutant les 2 diagrammes suivant à
condition que MH < 1 TeV

WL

WL

WL

WL

H

WL

WL

WL

WL

H H

WL WL

WL WL

H

WL WL

WL WL



Mécanisme de Higgs

◮ Dans le modèle standard, la brisure spontanée de la symétrie
électrofaible est obtenue avec le mécanisme de Higgs-Englert-Brout

◮ On veut coupler toutes les particules auxquelles on doit attribuer une
masse (fermions et bosons de l’interaction faible) à un nouveau champ
scalaire (S=0) dit de Higgs.

◮ Et on va choisir un potentiel dont la valeur minimale dans le vide
correspond à une valeur non nulle du champ de Higgs

◮ L’interaction des particules avec le champ de Higgs va “induire” la masse
de chaque particule



Mécanisme de Higgs

◮ On considère un champ complexe scalaire φ(x) et un lagrangien :

L = ∂µφ
†∂µφ− V (φ) , V (φ) = µ2φ†φ+ h(φ†φ)2

◮ L est invariant sous la transformation :

φ(x) = φ′(x) = eiαφ(x)

◮ Pour avoir un état fondamental, le potentiel doit avoir un minimum. Il y a alors 2
possibilités

◮ µ2 > 0 : Le potentiel a un minimum trivial à
φ = 0. Ceci correspond à une particule
scalaire massive avec une masse µ et un
couplage quadratique h

◮ µ2 < 0 : Le minimum du potentiel est
maintenant obtenu pour :

|φ0| =

s

−µ2

2h
=

v√
2
> 0 , V (φ0) = −h

4
v4



Mécanisme de Higgs

◮ Grâce à l’invariance de phase U(1) du lagrangien, il y a un nombre infini
d’etats dégénérés au minimum d’énergie : φ0 = v√

2
eiα

◮ En choisissant une solution particulière, α = 0 par exemple, comme état
fondamental, la symétrie est brisée spontanément

◮ Si on paramétrise une excitation autour de l’état fondamental comme :

φ(x) =
1√
2

[v + φ1(x) + iφ2(x)]

avec, φ1 et φ2 des champs réels, le potentiel prend la forme :

V (φ) = V (φ0) − µ2φ2
1 + hvφ1(φ

2
1 + φ2

2) +
h
4

(φ2
1 + φ2

2)
2

◮ φ1 à une masse m2
φ1

= −2µ2 et φ2 une masse nulle (boson de
Goldstone)

◮ En ce qui concerne l’apparition de ce boson de Goldstone, φ2 décrit les
excitations autour d’une direction dans le potentiel où les états ont la
même énergie que l’état fondamental choisi. Ces excitations ne coûte
rien en énergie et correspondent à une particule de masse nulle



Mécanisme de Higgs

◮ Appliquons maintenant cette brisure spontanée de symétrie au cas
d’une symétrie de jauge locale

◮ On considère un doublet de SU(2)L de champs complexes scalaires
avec une hypercharge Y W = 1

φ(x) =

„

φ+

φ0

«

avec
φ+ = (φ1 + iφ2)/2
φ0 = (φ3 + iφ4)/2

◮ et on reprend le lagrangien précédent en introduisant la dérivée
covariante suivante :

L = Dµφ
†Dµφ− µ2φ†φ− h(φ†φ)2

Dµφ =

»

∂µ − igIW · Wµ − ig′ YW

2
Bµ
–

φ

◮ L est invariant sous une transformation local SU(2)L × U(1)Y

◮ Les opérateurs IW et Y W sont ici les générateurs des transformations de
jauge de SU(2)L et U(1)Y

◮ Le potentiel est similaire à celui étudié précédemment, et il y a un
nombre infini d’états au minimum d’énergie



Mécanisme de Higgs

◮ En choisissant un état fondamental particulier, la symétrie
SU(2)L × U(1)Y est brisée spontanément en une symétrie U(1)em

◮ On choisit l’état fondamental avec IW = 1/2, IW
3 = −1/2 et Y = 1 :

φ0 =
1√
2

„

0
v

«

qui brise donc SU(2)L × U(1)Y

◮ Ce choix d’une solution avec Q = IW
3 + Y/2 = 0 permet de garder la

symétrie U(1)em :

Qφ0 = 0

φ0 → φ′
0 = eiα(x)Qφ0 = φ0

Et le photon conserve une masse nulle
◮ Les autres bosons de jauge vont eux “acquérir” leur masse lors de cette

brisure de SU(2)L × U(1)Y



Mécanisme de Higgs

◮ On peut maintenant remplacer φ(x) par φ0 dans le lagrangien
Et isoler la partie du Lagrangien contenant les termes de masse des
bosons W± et Z 0 :

˛

˛

˛

˛

„

−ig
τ

2
· Wµ − i

g′

2
Bµ

«

φ0

˛

˛

˛

˛

2

◮ L’identification de chaque terme permet de trouver :

W± = (W 1
µ ∓ iW 2

µ)/
√

2 avec MW =
1
2

vg

Zµ =
gW 3

µ − g′Bµ
p

g2 + g′2
avec MZ =

1
2

v
p

g + g′

Aµ =
g′W 3

µ + gBµ
p

g2 + g′2
avec MA = 0

◮ La brisure spontanée de la symétrie électrofaible SU(2)L × U(1)Y a
généré une masse aux bosons W± et Z 0 tout en gardant le photon de
masse nulle



Mécanisme de Higgs

◮ Dans la partie scalaire du lagrangien, on a introduit une nouvelle
particule scalaire :

Le boson de Higgs dont la masse vaut :
MH =

√

−2µ2 =

√

2hv

◮ Le même champ de Higgs peut également être utilisé pour donner une
masse aux fermions (sauf les neutrinos)

◮ On trouve :

mf = cf
v√
2

(v = 246GeV )

où les facteurs cf restent des paramètres arbitraires du modèle
◮ Les masses des fermions ne sont donc pas prédites, mais le couplage

du Higgs aux fermions est proportionnel à leur masse
◮ La masse du boson de Higgs est peu contrainte dans la théorie



Propriétés du boson de Higgs
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Propriétés du boson de Higgs
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Recherche du Higgs au LEP



Recherche du Higgs au LEP
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Production du boson de Higgs en collisionneur hadronique



Production du boson de Higgs en collisionneur hadronique



Production du boson de Higgs en collisionneur hadronique
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Recherche du Higgs au Tevatron
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Recherche du Higgs au LHC : CMS
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Recherche du Higgs au LHC : ATLAS
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Ajustement des paramètre du MS
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SLD à SLAC

◮ Accélérateur électron-positron SLC à SLAC à
√

s ∼ 92GeV
◮ Détecteur MarkII puis SLD à partir de 1992
◮ A partir de 1992 : faisceau polarisé



Les accélérateurs au CERN

◮ PS (proton synchrotron) : 1958,
E = 28 GeV

◮ SPS (proton synchrotron) : 1978
◮ Spp̄S : collisionneur proton-antiproton :

1981,
√

s = 450GeV expériences
UA1/UA2

◮ LEP : collisionneur électron-positron du
CERN
LEPI : 1989-1995 à

√
s ∼ 92GeV

LEPII : 1996-2000 à√
s = [136 −−209]GeV

Expériences ALEPH, DELPHI, L3, OPAL
◮ LHC : collisionneur proton-proton :

2009,
√

s = 7 − 14TeV expériences
CMS, ATLAS, LHCb, ALICE

*

*electrons
positrons
protons
antiprotons
Pb ions

LEP: Large Electron Positron collider
SPS: Super Proton Synchrotron
AAC: Antiproton Accumulator Complex
ISOLDE: Isotope Separator OnLine DEvice
PSB: Proton Synchrotron Booster
PS: Proton Synchrotron

LPI: Lep Pre-Injector
EPA: Electron Positron Accumulator
LIL: Lep Injector Linac
LINAC: LINear ACcelerator
LEAR: Low Energy Antiproton Ring
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Les accélérateurs à DESY

◮ PETRA : collisionneur e+e−
1978-1986√

s = 19GeV
◮ HERA : collisionneur e − p

1992-2007
E(p)=920 GeV
E(e)=27,5 GeV



Les accélérateurs à Fermilab

◮ Tevatron : collisionneur pp̄
◮ 1992-1995√

s = 1, 8TeV
◮ 2001-2011√

s = 1, 96TeV
◮ Expériences CDF et DØ



Nombre de neutrinos légers
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Les neutrinos de chaque famille
contribue à la largeur totale du Z 0

Comme σZ ∝ ΓZ , la section
efficace dépend du nombre de
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Les mesures du LEP excluent une 4ème génération de lepton avec un neutrino léger



Section efficace f f̄ en collisionneur e+e−
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Section efficace W +W− à LEP2
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