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Invariance et loi de conservation

◮ En mécanique classique, l’invariance d’un système sous une
transformation est reliée à la conservation d’une quantité
correspondante.

◮ Exemples :

Invariance sous : Quantité conservée
rotation ⇐⇒ moment angulaire
translation d’espace ⇐⇒ impulsion
translation du temps ⇐⇒ énergie

◮ Ceci est formalisé dans le théorême de Noether :
Une quantité conservée est associée à toute transformation qui laisse
invariante les équations du mouvement (c.a.d qui commute avec le
hamiltonien)



Invariance et loi de conservation

Considérons la transformation U (translation, rotation...) d’un système S pendant une
expérience, et que le résultat de la mesure reste inchangé dans le système S′

résultant de cette transformation.
On considère l’élément matriciel < f |O|i > et on se place dans le système S′ où les
états sont modifiés :

|i > → |i ′ >= U|i >
|f > → |f ′ >= U|f >

On peut alors avoir 2 démarches :
◮ Pour avoir le même résultat de mesure que dans S, on doit modifier la quantité

mesurée : O → O′

< f ′|O′|i ′ >=< f |O|i > ⇒ O′ = UOU†

Et la probabilité de transition doit être la même dans les 2 systèmes :

| < f |i > |2
< f |f >< i|i > =

| < f ′|i ′ > |2
< f ′|f ′ >< i ′|i ′ > =

| < f |U†U|i ′ > |2
< f |U†U|f >< i|U†U|i ′ > =⇒ U†U = 1

Les opérateurs associés aux transformations de coordonnées sont unitaires

◮ On mesure la même quantité dans le système S′ :

< f ′|O|i ′ > = < f |U†OU|i >
On peut déduire la mesure de cette quantité dans le système S′ à partir du
système S si on connait U†OU.



Invariance et loi de conservation

◮ Application :
considérons un hamiltonien H invariant par rapport à une transformation U et une
fonction d’onde arbitraire Ψ :

H → H′ = UH = H

Ψ → Ψ′ = UΨ

Appliquons cette transformation U à l’équation d’onde :

U(HΨ) = H′Ψ′ = (UH)(UΨ) = H′UΨ = HUΨ

On en déduit que :

(UH − HU)Ψ = [U,H] Ψ = 0

[U,H] = 0

On trouve la relation de commutation indiquant qu’une quantité associée à la
transformation U est conservée
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Définition de la parité

◮ la transformation correspondant à une
réflexion dans l’espace :

x → x ′ = −x

◮ permet de définir l’opérateur parité P
agissant sur une fonction d’onde :

ψ(t , x) → ψ′(t , x) = Pψ(t , x) = ψ(t ,−x)

◮ C’est une transformation discrète x

y

z
P

x’

y’

z’x

y

z
P

x’

y’

z’

◮ P est unitaire :

P2ψ(t , x) = ψ(t , x) ⇒ P2 = 1

◮ Si ψ est un état propre de P :

PψP = ηPψP ⇒ P2ψP = η2
PψP = ψP

où, ηP et ψP sont la valeur propre et la fonction propre du système.
◮ La parité ηP peut donc prendre 2 valeurs :

ηP = +1 (ψP paire)

ηP = −1 (ψP impaire)



Transformation par parité

◮ Dans l’espace euclidien :
P(~u) = −~u
P(~u · ~v) = ~u · ~v
P(~u ∧ ~v) = ~u ∧ ~v : vecteur-axial ou pseudo-vecteur
P((~u ∧ ~v) · ~w = −(~u ∧ ~v) · ~w : pseudo-scalaire

◮ Transformation de certaines quantités où opérateurs :

t −→ t

x −→ −x

p −→ −p

σ, J, L −→ σ, J, L

E −→ −E

B −→ B

◮ On verra par la suite que les interactions électromagnétique et forte conservent la
parité, mais pas l’interaction faible



Parité d’un système de 2 particules

◮ Soit un système de 2 particules représenté par ψ(~r1, ~r2)

◮ Pψ(~r1, ~r2) = ψ(−~r1,−~r2)

◮ Dans le cas où |~r1,−~r2| → ∞, le système est représenté par
ψ(~r1, ~r2) = ψ(~r1)ψ(~r2)

◮ Donc, Pψ(~r1, ~r2) = ψ(−~r1)ψ(−~r2)

◮ Dans le cas où ψ1 et ψ2 sont les états propres de P avec les valeurs propres η1
et η2 :

Pψ(~r1, ~r2) = η1ψ(~r1)η2ψ(~r2) = η1η2ψ(~r1, ~r2) = ηψ(~r1, ~r2)

avec, η = η1η2

◮ La parité est un nombre quantique multiplicatif



Parité orbitale

◮ La fonction d’onde ψ d’un système peut être écrite à partir des harmoniques
sphériques Ylm

ψ(r , θ, φ) = R(r)Ylm(θ, φ)

◮ Action de la parité sur les harmoniques sphériques :

(r , θ, φ) → (r , θ − π, φ+ π)

PYlm(θ, φ) = (−1)l Ylm(θ, φ)

◮ le moment cinétique orbital l détermine donc la parité orbitale :
ηP = +1 pour l=0,2,4...
ηP = −1 pour l=1,3,5...



Parité intrinsèque d’une particule

◮ Comme l’opérateur de parité P commute avec l’opérateur de spin d’une particule,
on peut définir un nombre quantique de parité ηP = ±1 qui est une propriété
intrinsèque de cette particule

◮ On classe donc les particules en fonction de leur spin et de ηP :
◮ Spin = 0 et ηP = +1 : scalaire
◮ Spin = 0 et ηP = −1 : pseudo-scalaire
◮ Spin = 1 et ηP = +1 : axiale
◮ Spin = 1 et ηP = −1 : vectorielle

◮ Cas du photon :

Le potentiel vecteur ~A est formellement équivalent à la fonction d’onde du photon.
~F = d~v

dt = d2~r
d2t

: ~F est un vecteur, et ~F → −~F si~r → −~r
~F = q(~E + ~v ∧ ~B) : ~B est un pseudo-vecteur
~B = ∇∧ ~A : ~A est un vecteur
et si~r → −~r alors ~A → −~A
La parité du photon est négative

◮ Parité intrinsèque des particules de spin 1/2 :
Par convention : ηproton = ηneutron = +1

◮ Parité totale d’un système = produit des parités intrinsèques et orbitales

ηP =
Y

n

ηn
Y

k

(−1)lk



Parité d’un système de 2 particules

◮ Soit 2 particules de parité intrinsèque η1 et η2

◮ La parité totale du système est : η = (−1)lη1η2, où l est le moment angulaire
relatif des 2 particules

◮ Cas du pion :

◮ Moment cinétique total : Jπ0 = Jπ+ = Jπ− = 0
◮ Parité π− déterminée à partir de π− + deuton → n + n

Etat initial :
◮ Pour le pion : l = 0 par

rapport au deuton, et S=0

◮ le deuton a un moment
cinétique total J=1

◮ =⇒ J = 1 dans la voie
initiale

Etat final :
◮ J doit donc aussi être égal à 1

◮ les 2 neutrons peuvent avoir S = 0 ou S = 1
et ont un moment angulaire relatif L

◮ Mais les 2 neutrons sont des fermions
identiques : la fonction d’onde doit être
antisymétrique en les interchangeant :
(−1)L+S+1 = −1 =⇒ L+S doit être pair

◮ J=1 donne 3 solutions : (L=0,S=1), (L=1,S=1),
(L=2,S=1)

◮ (L=1,S=1) est la seule configuration possible

=⇒ La parité du pion ηπ = −1



Parité intrinsèque des anti-particules

◮ En théorie quantique des champs, on montre que :

ηantiparticule = ηparticule(−1)2S

◮ Pour les fermions : ηantiparticule = −ηparticule

◮ Pour les bosons : ηantiparticule = ηparticule

η(e+) = −1 η(e−) = 1

η(q̄) = −1 η(q) = 1

η(π+) = −1 η(π−) = −1

◮ Un état lié fermion-antifermion dans un état de moment cinétique orbital l aura
une parité :

ηP = (−1)lηf
Pη

f̄
P = (−1)l+1

◮ Et pour un système boson-antiboson : ηP = (−1)l



Conservation de la parité

◮ La parité est conservée dans les interactions électromagnétique et forte

◮ Exemple : désintégration par interaction forte (τ ∼ 10−23s) du ∆++

◮ ∆++ → p + π+ :

u
u
u

u
u
d

u
d
–

∆++

π+

p

u
u
u

u
u
d

u
d
–

∆++

π+

p

◮ ∆++ (JP = 3/2+), p (JP = 1/2+), π+ (JP = 0−)
◮ Spin : 3/2 → 1/2 + 0 =⇒ L = 1 pour conserver le moment cinétique total
◮ On trouve donc :

ηP(∆++) → ηP(p)ηP(π+)(−1)L

+1 → (+1)(−1)(−1)



Violation de la parité

◮ De nombreux tests ont montré que la parité est conservée dans les interactions
électromagnétique et forte.

◮ Mais dans les années 1950, problème appelé le “θ − τ puzzle”

◮ on observe 2 particules, appelées (θ et τ à cette époque) de même masse et de
spin 0 qui se désintègrent par interaction faible (car τ ∼ 10−8 s) :

K + → π0 + π+ et K + → π+ + π+ + π−

P2
π = 1 P3

π = −1

A cette époque, on ne pensait pas que “θ” et “τ ” puisse être la même particule car
on pensait que la parité était une propriété essentielle de la nature

◮ En 1956, Lee et Yang postulent la non-conservation de la parité dans les
interactions faibles

◮ Expérience de Mme Wu :

◮ Désintégration : 60Co →60 Ni + e− + ν̄e dans
un champ magnétique (spin aligné avec ~B)

◮ l’expérience montre que les éléctron sont émis
de manière préférentielle dans la direction
opposée au spin des noyaux

◮ violation de la parité dans les interactions
faibles
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Définition de la conjugaison de charge

◮ C’est l’opération qui tranforme une particule en son anti-particule :
même masse, même spin, même quantité de mouvement, mais en changeant le
signe de tous les autres nombres quantiques additifs (Q, B, S, L...)

◮ On définit l’opérateur de conjugaison de charge C :

C|ψ >= |ψ̄ >

◮ C est hermitien et unitaire (C2 = 1)

◮ Seules les particules dont les nombres quantiques internes sont nuls peuvent
être état propre de C pour obéir à :

C|ψ >= ηC |ψ > avec ηC = ±1

où ηC est la parité de charge
C’est le cas pour γ, π0, e+e−... mais pas pour le neutron...

◮ La parité de charge est un nombre quantique multiplicatif

◮ Cas du photon :
C inverse la charge et le moment magnétique, et donc les champs électrique et
magnétique
=⇒ ηC(γ) = −1



Système f f̄ et C

◮ Considérons un système f f̄ avec un moment orbital L et un spin s = 0 ou 1

◮ On veut obtenir la valeur propre ηC définie par C|f f̄ >= ηC |f f̄ >
◮ C remplace f par f̄ et vice versa, mais les spins et positions sont inchangées
◮ Si on échange les positions : fonction d’onde identique avec un facteur

multiplicatif (−1)L

◮ Si on échange les spins : facteur multiplicatif additionnel (−1)S+1

◮ Ces 3 opérations on permis d’échanger les 2 particules de départ et
introduise un facteur : (−1)L(−1)S+1

◮ le principe de Pauli s’applique aux fermions identiques mais également à
leurs antifermions
=⇒ le système f f̄ est antisymétrique
Donc échanger f et f̄ doit introduire un facteur multiplicatif (-1)

◮ On a donc : ηC(f f̄ )(−1)L(−1)S+1 = −1

◮ Et on en déduit que : ηC(f f̄ ) = (−1)L+S

◮ Exemple :

le π0 est un mélange uū et dd̄ vraiment neutre avec L=0 et S=0
=⇒ ηC(π0) = 1



Conservation de C

◮ L’interaction électromagnétique conserve C :
◮ Désintégration du π0 : L=0, S=0 et ηC = 1
◮ π0 → γγ : ηC = 1 et ηC = (−1)2 : =⇒ OK
◮ π0 → γγγ : ηC = 1 et ηC = (−1)3 : jamais observée

◮ L’interaction forte conserve également C :
processus pp̄ avec h=un hadron (B=0)

p + p̄ → π+ + h

p + p̄ → π− + h

< pp̄|T |π+h >=< pp̄|C−1CTC−1C|π+h >=< p̄p|CTC−1|π−h̄ >

Si T est invariant par C =⇒ CTC−1 = T

< p̄p|T |π−h̄ >=< pp̄|T |π+h >

On observe le même spectre en énergie pour π+ et π−



Violation de C

◮ L’interaction faible viole C

◮ Rappels :

◮ Un objet est chiral s’il n’est pas superposable à son image dans un miroir
◮ L’hélicité est la projection du spin sur l’impulsion : même sens= hélicité

droite, sens opposé=hélicité gauche
◮ Pour des neutrinos de masse nulle, l’hélicité équivaut à la chiralité

◮ Seuls des neutrinos gauches et des anti-neutrinos droits ont été
expérimentalement observés

π+νµ µ+

π-ν
–

µ µ-

π+νµ µ+

π-ν
–

µ µ-

Observé

Interdit



La G-parité

La conservation de la conjugaison de charge ne s’applique qu’à un nombre restreint de
système. Exemple :

C|π0 > = |π0 >

C|π± > 6= ±|π∓ >

Pour l’interaction forte où la charge électrique ne joue aucun rôle, on ne distingue pas
π0, π+ et π−. On souhaite donc étendre le concept de conjugaison de charge à tous
les états d’un même multiplet d’isospin :

G

0

@

π+

π0

π−

1

A = ηG

0

@

π+

π0

π−

1

A

on définit donc un nouvel opérateur G :

G = C expiπI2

qui est la combinaison de la conjugaison de charge et d’une rotation de π autour du
2ème axe dans l’espace d’isospin.

◮ L’interaction forte est invariante par G
◮ L’interaction faible est insensible à l’isospin, mais viole C : donc elle viole G
◮ L’interaction électromagnétique respecte C, mais n’est pas invariante par rotation

d’isospin : elle viole également G
exercice : Montrer que G|π0 >= −|π0 > et G|π± >= −|π± >
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Conservation de CP ?

C P

CP

π+

µ+

νµ

π+π-

π-

µ-

ν
–

µ

ν
–

µ

νµ

µ+

µ-

C P

CP

π+

µ+

νµ

π+π-

π-

µ-

ν
–

µ

ν
–

µ

νµ

µ+

µ-

◮ Pas de neutrino droit ni d’anti-neutrino gauche :
Aucune des désintégrations tranformées par P ou C n’est possible

◮ Par contre, celle par transformation CP existe !

◮ Jusqu’en 1964, on a cru que la symétrie CP était conservée...



Violation de CP dans les interactions faibles

◮ En 1964, une expérience sur les kaons neutres (K 0 et K̄ 0) montre une violation
de très faible amplitude de CP dans les interactions faibles

◮ Ce sera le sujet d’un des papiers étudiés

◮ Conséquences de la violation de CP :

Permet une différenciation absolue de la matière et de l’antimatière
Peut expliquer l’origine de l’asymétrie matière-antimatière de notre univers



Violation de CP dans les interactions faibles

◮ En 1964, expérience de J.H. Christensen, J. Cronin, V. Fitch et R. Turlay

◮ Les kaons (mésons) ont une parité négative :

P|K 0 >= −|K 0 > et P|K̄ 0 >= −|K̄ 0 >

et, K̄ 0 est l’antiparticule de K 0 :

C|K 0 >= |K̄ 0 > et C|K̄ 0 >= |K 0 >

◮ En combinant les 2 symétries, on obtient :

CP|K 0 >= −|K̄ 0 > et CP|K̄ 0 >= −|K 0 >

◮ Les états propres de CP sont donc :

|K 0
1 >=

1√
2
(|K 0 > −|K̄ 0 >) avec ηCP = 1

|K 0
2 >=

1√
2
(|K 0 > +|K̄ 0 >) avec ηCP = −1

◮ Si CP est conservée dans les désintégrations de ces kaons par interaction faible,
K 0

1 et K 0
2 se désintègreraient en 2 pions (ηCP = 1) et 3 pions (ηCP = −1)

respectivement



Violation de CP dans les interactions faibles

◮ Ces 2 états K 0
1 et K 0

2 ont des durées de vie différentes :

τ1 = 0, 892 ± 0, 002 × 10−10s et τ2 = 5, 18 ± 0.04 × 10−8s

◮ On produit par interaction forte des kaons, et si on attend un temps très supérieur
à τ1, on obtient un faisceau ne contenant que des particules K 0

2

◮ Si CP est conservée, la seule désintégration permise est en 3 pions

◮ Cette expérience de 1964 a montré que la désintégration en 2 pions se produit
avec une probabilité très faible, mais non nulle =⇒ violation de CP dans les
interactions faibles

◮ Les états propres d’interaction faible ne sont pas K 0
1 et K 0

2 mais un mélange de
ces 2 états :

|K 0
S > =

1
p

1 + |ǫ|2
(|K 0

1 > −ǫ|K̄ 0
2 >)

|K 0
L > =

1
p

1 + |ǫ|2
(ǫ|K 0

1 > +|K̄ 0
2 >)

ǫ = 2, 284 ± 0, 014 × 10−3
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Le renversement du temps

◮ C’est l’analogue temporel de la refléxion dans l’espace :

t → t ′ = −t

x → x ′ = x
~p → −~p
~L → −~L
~S → −~S

◮ Définition de l’opérateur renversement du temps T :

ψ(t , x) → ψ′(t , x) = T ψ(t , x) = ψ(−t , x)

◮ T est anti-unitaire :
En effet, après renversement du temps, la relation de commutation [xi , pj ] = iδij
devient [xi , pj ] = −iδij

◮ En conséquence : pas de valeurs propres, et pas de quantité physique mesurable
associée à cet opérateur

◮ On ne peut pas utiliser l’existence de modes de désintégrations interdits pour
tester la violation de l’invariance par rapport à T



Le renversement du temps

◮ Invariance par T en mécanique quantique :

T |α >= |α >T et T |β >= |β >T

T < α|β >T =< β|α >=< β|α >∗

< α|T †T |β >=< β|α >∗

◮ De manière générale :

|i > = |αi , ~pi ,mi > etat initial

|f > = |αf , ~pf ,mf > etat final

avec ~p l’impulsion, mi la 3ème composante de spin et α les autres nombres
quantiques

◮ L’invariance par T de < s|M|i > est vérifiée si :

< f |M|i > = T < i|M|f >T

< αf , ~pf ,mf |M|αi , ~pi ,mi > = < αi ,−~pi ,−mi |M|αf ,−~pf ,−mf >



La balance détaillée (I)

◮ Considérons la section efficace différentielle de la réaction 1 + 2 → 3 + 4 :

dσ

dΩ
(12 → 34) =

1

64π2s

p34

p12

1

(2S1 + 1)(2S2 + 1)

X

i

X

f

|Mfi |2

avec
√

s = E1 + E2 et p12 (p34) le moment dans le centre de masse dans l’état
initial (final)

◮ Et maintenant, la section efficace du processus inverse : 3 + 4 → 1 + 2 :

dσ

dΩ
(34 → 12) =

1

64π2s

p12

p34

1

(2S3 + 1)(2S4 + 1)

X

i

X

f

|Mif |2

◮ si la réaction est invariante par T :
X

i

X

f

|Mfi |2 =
X

i

X

f

|Mif |2

et on trouve la relation :

dσ

dΩ
(12 → 34) =

p2
34

p2
12

(2S3 + 1)(2S4 + 1)

(2S1 + 1)(2S2 + 1)

dσ

dΩ
(34 → 12)



La balance détaillée (II)

◮ Application à la réaction : p + p → π+ + d

◮ le spin du proton est 1/2, celui du deutéron est de 1

◮ On obtient :

dσ

dΩ
(pp → π+d) =

p2
π

p2
p

(2Sπ + 1) × 3

2 × 2

dσ

dΩ
(π+d → pp)

◮ Une mesure expérimentale des sections efficaces permet de déterminer le spin
du pion (Sπ = 0)

◮ L’application de la balance détaillée a permis de vérifier que les interactions
électromagnétiques et fortes sont invariantes par T
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Symétrie CPT

◮ Théorême CPT : invariance des interactions sous CPT (peu importe l’ordre)

◮ Toutes les interactions connues actuellement sont invariantes sous cette
transformation

◮ L’interaction faible viole “légèrement” CP, et donc T doit l’être aussi

◮ Test direct de la violation de T :
◮ Moment électrique dipolaire du neutron
◮ Absence de violation de T : le moment dipolaire du neutron doit être

strictement nul
◮ La présence d’un tel moment se manifestera par son interaction avec un

champ électrique
◮ Les expériences actuelles donnent une limite sur ce moment :
< 2, 9 × 10−26e cm

◮ Le modèle standard prédit ∼ 10−31e cm
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Tableau récapitulatif (I)

Quantité conservée ? Forte Electromagnétique Faible
Energie-impulsion Oui Oui Oui

Moment cinétique total J Oui Oui Oui
Charge électrique Q Oui Oui Oui

Le Oui Oui Oui
Lµ Oui Oui Oui
Lτ Oui Oui Oui

B (baryonique) Oui Oui Oui
I (isospin fort) Oui
Iz (isospin fort) Oui Oui

S (strange) Oui Oui
C (charm) Oui Oui
B (bottom) Oui Oui

T (top) Oui Oui
Parité Oui Oui

Renversement du temps Oui Oui
Parité de charge Oui Oui

CPT Oui Oui Oui

Mais attention aux oscillations de neutrinos...



Tableau récapitulatif (II)

◮ Résumé pour les symétries discrètes étudiées :

Interaction C P CP T CPT

Electromagnétique Oui Oui Oui Oui Oui
faible Non Non Faiblement Faiblement Oui

violée violée Oui
Forte Oui Oui Oui Oui Oui
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