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Invariance et loi de conservation

» En mécanique classique, 'invariance d’'un systéeme sous une
transformation est reliée a la conservation d’une quantité

correspondante.
» Exemples:
Invariance sous : Quantité conservée
rotation <= moment angulaire

translation d’'espace <= impulsion
translation du temps <= énergie

» Ceci est formalisé dans le théoréme de Noether :
Une quantité conservée est associée a toute transformation qui laisse
invariante les équations du mouvement (c.a.d qui commute avec le
hamiltonien)



Invariance et loi de conservation

Considérons la transformation U (translation, rotation...) d’'un systéme S pendant une
expérience, et que le résultat de la mesure reste inchangé dans le systeme S’
résultant de cette transformation.

On considére I'élément matriciel < f|Oli > et on se place dans le systeme S’ ou les
états sont modifiés :

i> — [|i’>=Uli>
f> — |f'>=U|f>
On peut alors avoir 2 démarches :

> Pour avoir le méme résultat de mesure que dans S, on doit modifier la quantité
mesurée: O — O’

<f|0'|i" >=<f|0li> = 0’ =uvout
Et la probabilité de transition doit étre la méme dans les 2 systémes :
|<fli>]2  |<ti’'>]7 | < flUtUli’ > |2
<fif ><ili> < ¥H[f/><ili’> <flUTUIf ><i|UTU]i’ >
Les opérateurs associés aux transformations de coordonnées sont unitaires

= Ufu=1

» On mesure la méme quantité dans le systéme S’ :
<toli'> = <flutouli >

On peut déduire la mesure de cette quantité dans le systeme S’ a partir du
systéme S si on connait UtOU.



Invariance et loi de conservation

> Application :
considérons un hamiltonien H invariant par rapport & une transformation U et une
fonction d’onde arbitraire W :

H — H =UH=H
v W =Uv

Appliquons cette transformation U a I'équation d’onde :

U(HWY) = H'W = (UH)(UW) = H'UV = HUW
On en déduit que :
(UH—HU)¥ = [U,H]v=0
[UH] = 0

On trouve la relation de commutation indiquant qu’une quantité associée a la
transformation U est conservée
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Définition de la parité

> la transformation correspondant a une

réflexion dans I'espace : Z
X —x' = —x P
> permet de définir 'opérateur parité P Yy >
agissant sur une fonction d’onde :
B(t,x) — ' (t,x) = Pyp(t, x) = 9(t, —x) /
X

» C’est une transformation discrete

» P est unitaire :
P2y(t,x) = (t,x) =P2=1
> Si estun état propre de P :

Pyp =mpve = Pp =npve = p
ou, np et ¢p sont la valeur propre et la fonction propre du systeme.
> La parité np peut donc prendre 2 valeurs :
np +1 (¢p paire)
np = —1(tp impaire)

A



Transformation par parité

» Dans I'espace euclidien :

P(0) =0

P - V) =0-v

P(UAV) =U0AV : vecteur-axial ou pseudo-vecteur
P(UGAV)-W =—(GAV)-W :pseudo-scalaire

» Transformation de certaines quantités ou opérateurs :

t —

X — —X

p — P
o,J,L — o,J,L

E — -E

B — B

> On verra par la suite que les interactions électromagnétique et forte conservent la
parité, mais pas l'interaction faible



Parité d’'un systeme de 2 particules

> Soit un systéme de 2 particules représenté par v(r1, r3)

> P11, 12) = (=11, —13)

» Dans le cas ou |r], —r3| — oo, le systéme est représenté par
W(r1,12) = P(r1)e(rz)

> Donc, Py(r1,1z2) = ¥(—11)y(—r2)

> Dans le cas ou ¢ et 1, sont les états propres de P avec les valeurs propres 7,
etny:

Py(r1, 12) = mp(r)nap(r2) = mmeyp (11, 12) = n(r1, r2)

aveg  n=mn2

> La parité est un nombre quantique multiplicatif



Parité orbitale

» La fonction d’onde 1 d’'un systéme peut étre écrite a partir des harmoniques
sphériques Y,

P(r,0,¢) = R(r)Yim(0, )
> Action de la parité sur les harmoniques sphériques :
(r.6,6) — (r,0—m¢+m)
PYim(0,6) = (~1)"Yim(6, )

> |le moment cinétique orbital | détermine donc la parité orbitale :
np = +1 pour [=0,2,4...
np = —1 pour I=1,3,5...



Parité intrinséque d’une particule

» Comme l'opérateur de parité P commute avec I'opérateur de spin d'une particule,
on peut définir un nombre quantique de parité np = +1 qui est une propriété
intrinséque de cette particule

» On classe donc les particules en fonction de leur spin et de np :

> Spin=0etnp = +1: scalaire

» Spin=0etnp = —1: pseudo-scalaire
> Spin=1etnp = +1: axiale

> Spin=1etnp = —1: vectorielle

» Cas du photon :
Le potentiel vecteur A est formellement équivalent a la fonction d’onde du photon.
- 7 2p = B = o -
F =9 = % :F estunvecteur, et F — —F sif — —F
F = q(E 4+ V A B) : B est un pseudo-vecteur
B=VAA:Aest un vecteur
etsir — —ralors A — —A
La parité du photon est négative
> Parité intrinséque des particules de spin 1/2 :
Par convention : 7proton = Mneutron = +1

> Parité totale d’'un systeme = produit des parités intrinseques et orbitales

e = [[m][-D*
nook



Parité d’'un systeme de 2 particules

> Soit 2 particules de parité intrinséque 7y et 7,

> La parité totale du systéme est : n = (—1)'n17,, o | est le moment angulaire
relatif des 2 particules

» Cas du pion :

> Moment cinétique total : J o = J,+ =J, - =0
> Parité 7~ déterminée a partir de 7~ + deuton — n+n

Etat final :
» J doit donc aussi étre égal a 1
Etat initial > les 2 neutrons peuvent avoir S =00u S =1
» Pour le pion : | = 0 par et ont un moment angulaire relatif L
rapport au deuton, et S=0 > Mais les 2 neutrons sont des fermions
» le deuton a un moment identiques : la fonction d’onde doit étre
cinétique total J=1 antisymétrique en les interchangeant :
_q)L+S+1 A i
» — J — 1 dans la voie (-1) = —1 = L+S doit étre pair
initiale » J=1 donne 3 solutions : (L=0,S=1), (L=1,S=1),
(L=2,S=1)

> (L=1,S=1) est la seule configuration possible

= La parité du pion nr = —1



Parité intrinséque des anti-particules

» En théorie quantique des champs, on montre que :
2s
Tantiparticule = Wparticule(_l)
> Pour les fermions : nantiparticule = —7particule

> Pour les bosons : nantiparticule = Mparticule

net) = -1 ne”)=1
n(@) =-1 n(a) =1
n(r*) = -1 n(r”) =-1
> Un état lié fermion-antifermion dans un état de moment cinétique orbital | aura

une parité :
np = (=1)'npnp = (-1)'**

» Et pour un systéme boson-antiboson : np = (—1)|



Conservation de la parité

> La parité est conservée dans les interactions électromagnétique et forte
» Exemple : désintégration par interaction forte (r ~ 10~23s) du At+

> ATt S p4at

» At4 (P =3/2%),p@P =1/2%), =t AP =07)
> Spin:3/2 — 1/2+ 0= L = 1 pour conserver le moment cinétique total
> On trouve donc :
me(ATT) = mp(p)e(rt)(—1)"
+1 — (+1)(-1)(-1)



Violation de la parité

» De nombreux tests ont montré que la parité est conservée dans les interactions
électromagnétique et forte.

> Mais dans les années 1950, probléme appelé le “0 — T puzzle”
> on observe 2 particules, appelées (0 et T a cette époque) de méme masse et de
spin 0 qui se désintégrent par interaction faible (car 7 ~ 108 s) :
Kt - a%+7F e KFoat4+at4a
Pi=1 PI=-1

“_n

A cette époque, on ne pensait pas que “0” et “r” puisse étre la méme particule car
on pensait que la parité était une propriété essentielle de la nature

» En 1956, Lee et Yang postulent la non-conservation de la parité dans les
interactions faibles

» Expérience de Mme Wu :

» Désintégration : 99Co — Ni + e~ + 7 dans
un champ magnétique (spin aligné avec B)
> I'expérience montre que les éléctron sont émis

de maniére préférentielle dans la direction
opposée au spin des noyaux

» violation de la parité dans les interactions
faibles
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Définition de la conjugaison de charge

» C’est I'opération qui tranforme une particule en son anti-particule :
méme masse, méme spin, méme quantité de mouvement, mais en changeant le
signe de tous les autres nombres quantiques additifs (Q, B, S, L...)

> On définit 'opérateur de conjugaison de charge C :

Clyp >= |9 >

» C est hermitien et unitaire (C2 = 1)
> Seules les particules dont les nombres quantiques internes sont nuls peuvent
étre état propre de C pour obéir a :
Cly >=nclyp > avec nc ==+1

ou nc est la parité de charge
C’est le cas pour ~, 70, ete~... mais pas pour le neutron...

> La parité de charge est un nombre quantique multiplicatif

» Cas du photon :

C inverse la charge et le moment magnétique, et donc les champs électrique et
magnétique
= nc(y)=-1



Systéme ff et C

» Considérons un systéme ff avec un moment orbital L et un spins = 0 ou 1
» On veut obtenir la valeur propre nc définie par C|ff >= nc|ff >

> Cremplace f par f et vice versa, mais les spins et positions sont inchangées

> Sion échange les positions : fonction d'onde identique avec un facteur
multiplicatif (—1)t

» Sion échange les spins : facteur multiplicatif additionnel (—1)S+1

» Ces 3 opérations on permis d'échanger les 2 particules de départ et
introduise un facteur : (—1)-(—1)S+1

> le principe de Pauli s’applique aux fermions identiques mais également a
leurs antifermions
= le systéme ff est antisymétrique
Donc échanger f et f doit introduire un facteur multiplicatif (-1)

» Onadonc: ne(FF)(—=1)H(-1)St1 = —1
» Eton en déduit que : ¢ (ff) = (—1)-+S
» Exemple :

le 79 est un mélange uil et dd vraiment neutre avec L=0 et S=0
= ne(n) =1



Conservation de C

> Linteraction électromagnétique conserve C :

» Désintégration du 70 : L=0, S=0 et nc = 1
» 10 = yyine =letne = (—1)2: = OK
» 10 — yyy:nec = 1letne = (—1)% : jamais observée

> Linteraction forte conserve également C :
processus pp avec h=un hadron (B=0)

pP+p—m+h
P+p—7 +h
< pp|T|rth >=< pp|Cc~CcTC~C|r*h >=< pp|CTC*|x—h >
SiTestinvariantpar C=  CTC 1 =T
< pp|T|m~h >=< pp|T|r*h >

On observe le méme spectre en énergie pour 7+ et 7~



Violation de C

» Linteraction faible viole C
> Rappels:

» Un objet est chiral s'il n’est pas superposable a son image dans un miroir

> L’hélicité est la projection du spin sur I'impulsion : méme sens= hélicité
droite, sens opposé=hélicité gauche

» Pour des neutrinos de masse nulle, I'hélicité équivaut a la chiralité

» Seuls des neutrinos gauches et des anti-neutrinos droits ont été
expérimentalement observés

—_— —
Vu T Ll+ Observé
- —
Vu L H Interdit




La G-parité

La conservation de la conjugaison de charge ne s’applique qu'a un nombre restreint de
systeme. Exemple :

> = |7%>

Clrt > # +zF >
Pour l'interaction forte ou la charge électrique ne joue aucun réle, on ne distingue pas

70, =t et #—. On souhaite donc étendre le concept de conjugaison de charge & tous
les états d’'un méme multiplet d’'isospin :

ot mt
g 70 = 1 70
™ ™

on définit donc un nouvel opérateur G :

g _ C eXpi7'r|2

qui est la combinaison de la conjugaison de charge et d’une rotation de 7 autour du
2éme axe dans 'espace d'isospin.

» Linteraction forte est invariante par G
» Linteraction faible est insensible a I'isospin, mais viole C : donc elle viole G

» Linteraction électromagnétique respecte C, mais n’est pas invariante par rotation
d’isospin : elle viole également G

exercice : Montrer que G|7° >= — |70 > et G|nF >= — |7+ >
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Conservation de CP ?

» Pas de neutrino droit ni d’anti-neutrino gauche :
Aucune des désintégrations tranformées par P ou C n'est possible

» Par contre, celle par transformation CP existe!
» Jusqu’en 1964, on a cru que la symétrie C'P était conservée...



Violation de CP dans les interactions faibles

» En 1964, une expérience sur les kaons neutres (K° et K®) montre une violation
de tres faible amplitude de CP dans les interactions faibles

ERN S a3
K uct uct K K W W IS
—

d W s d uc,t s

» Ce sera le sujet d'un des papiers étudiés

» Conséquences de la violation de CP :

Permet une différenciation absolue de la matiére et de I'antimatiére
Peut expliquer I'origine de I'asymétrie matiére-antimatiére de notre univers



Violation de CP dans les interactions faibles

» En 1964, expérience de J.H. Christensen, J. Cronin, V. Fitch et R. Turlay
> Les kaons (mésons) ont une parité négative :

PKO>=—K®> et PKO>=—KO>
et, KO est I'antiparticule de K :
CIKO>=|K®> et CK®>=|K®>
» En combinant les 2 symétries, on obtient :
CPIKO >= — K> et CPKO>=—K®>

> Les états propres de CP sont donc :

1 _
KO >= —2(|K0 >—|K%>) avec nep =1

7

1 _
KD >= ﬁ(lKo >+[K%>) avec nep =-1

> SiCP est conservée dans les désintégrations de ces kaons par interaction faible,
Kl0 et K_20 se désintégreraient en 2 pions (ncp = 1) et 3 pions (ncp = —1)
respectivement



Violation de CP dans les interactions faibles

> Ces 2 états K2 et K ont des durées de vie différentes :
71 =0,892+0,002 x 1079 et 7, =518+0.04 x 10~ 8s

» On produit par interaction forte des kaons, et si on attend un temps trés supérieur
a 11, on obtient un faisceau ne contenant que des particules K20
> SiCP est conservée, la seule désintégration permise est en 3 pions

> Cette expérience de 1964 a montré que la désintégration en 2 pions se produit
avec une probabilité treés faible, mais non nulle = violation de CP dans les
interactions faibles

> Les états propres d'interaction faible ne sont pas KlO et Kg mais un mélange de

ces 2 états :
1 _
K> = ——(|K? > —¢K? >
KS s (Kd > —elRg >)
0 1 0 20
KG > = (e[Ky > +[Ky >)

V14 el?

e = 2,284+0,014 x 103
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Le renversement du temps

v

C’est I'analogue temporel de la refléxion dans I'espace :

t —
X —
P —
L -
s —

t/ = —t
x' =x

-p
L

-S

Définition de I'opérateur renversement du temps 7 :

(t,x) — P (t,x) = Ta(t,x) = ¥(-t,x)

7 est anti-unitaire :

En effet, apres renversement du temps, la relation de commutation [x;, pj] = id;

devient [x;, pj] = —idj

En conséquence : pas de valeurs propres, et pas de quantité physique mesurable

associée a cet opérateur

On ne peut pas utiliser I'existence de modes de désintégrations interdits pour
tester la violation de I'invariance par rapporta 7



Le renversement du temps

> Invariance par 7 en mécanique quantique :
Tla >=|a>T et  TIB>=|8>T
T <ol >T=< Bla >=< Bla >*
< a|THT|8 >=< Bla >*
> De maniére générale :
li> = |aj,p;,m > etatinitial
[f > = |af,Pr,m; > etatfinal

avec [ I'impulsion, m; la 3¢éme composante de spin et « les autres nombres
quantiques

> Linvariance par 7 de < s|M|i > est vérifiée si :
< fIM|i > T <imff >T
< oy, Pr,MeM|ag, Bi,m; > = < e, —Pi, —mi|M|ag, —Pr, —my >



La balance détaillée (1)

» Considérons la section efficace différentielle de la réaction 1 +2 — 3+ 4:

do 1 pss 1 2
12 5 34) = M
aa ) 6472s p1p (251 + 1)(2S; + 1) Z Z M|

avec /s = E; + E; et p12 (p34) le moment dans le centre de masse dans I'état
initial (final)

» Et maintenant, la section efficace du processus inverse:3+4 — 14 2:

do 1 p12
—(34 12 =
aq 34— 12) 64725 Pag (253 + 1)( 254 11 Z Z M

> sila réaction est invariante par 7 :
Do oMaE = >N Mg
if if

et on trouve la relation :

do

(2S5 +1)(2S4 + 1) d
5 =7 (34 — 12)

p3,
12 34) = s T oA T o)
( ) P2, (251 +1)(2S; + 1) dQ



La balance détaillée (II)

> Application & laréaction:p +p — 7+ +d
> le spin du proton est 1/2, celui du deutéron est de 1
» On obtient :

do p2 (2Sx +1) x 3 do
-~ +d = I Tm T (nhd
aqPP—md) P 2x2 aa'” PP)

» Une mesure expérimentale des sections efficaces permet de déterminer le spin
du pion (S =0)

> Lapplication de la balance détaillée a permis de vérifier que les interactions
électromagnétiques et fortes sont invariantes par 7
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Symétrie CPT

» Théoréme CPT : invariance des interactions sous CP7 (peu importe I'ordre)

» Toutes les interactions connues actuellement sont invariantes sous cette
transformation

» Linteraction faible viole “légérement” C'P, et donc 7 doit I'étre aussi

» Test direct de la violation de 7 :

>
>

Moment électrique dipolaire du neutron

Absence de violation de 7 : le moment dipolaire du neutron doit étre
strictement nul

La présence d’'un tel moment se manifestera par son interaction avec un
champ électrique

Les expériences actuelles donnent une limite sur ce moment :

<2,9%x 10 %ecm

Le modéle standard prédit ~ 10~31e cm
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Tableau récapitulatif (1)

Quantité conservée ? Forte  Electromagnétique  Faible
Energie-impulsion Oui Oui Oui
Moment cinétique total J Oui Oui Oui
Charge électrique Q Oui Oui Oui
e Oui Oui Oui
Ly Oui Oui Oui
Lr Oui Oui Oui
B (baryonique) Oui Oui Oui
| (isospin fort) Oui
I (isospin fort) Oui Oui
S (strange) Oui Oui
C (charm) Oui Qui
B (bottom) Oui Oui
T (top) Oui Oui
Parité Oui Oui
Renversement du temps Oui Oui
Parité de charge Oui Oui
CPT Oui Oui Oui

Mais attention aux oscillations de neutrinos...




Tableau récapitulatif (I1)

» Résumé pour les symétries discrétes étudiées :

Interaction | C P CP T CPT
Electromagnétique | Oui  Oui Oui Oui Oui
faible Non Non Faiblement Faiblement Oui

violée violée Oui

Forte Oui Oui Oui Oui Oui
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