Particules et Symétries: Partie I

P. Verdier (verdier@ipnl.in2p3.fr) et G. Grenier

Institut de Physique Nucléaire de Lyon

11 mars 2014

Bibliographie

- ▶ Bibliographie :
 - "Quarks and Leptons," Halzen et Martin
 - "Noyaux et Particules (Modèles et symétries)," Valentin
 - "Introduction to elementary particles," Griffith
 - "Les particules et leurs symétries," Chanfray et Smadja
- Notes de cours :

http://www.ipnl.in2p3.fr/cours/verdier/SymetriesEtParticules2013/

Plan du cours

- Introduction Générale
- Modèle des quarks
- Symétries C, P, T
- ▶ Interaction faible
 - Théorie de Fermi
 - Courants neutres
 - Cabibbo
 - Matrice CKM
 - Modèle lectrofaible
 - Brisure symétrie électrofaible
 - boson de higgs
- Introduction QCD et modèle des partons
- (Brève introduction de la supersymétrie)

- Première partie : Forme traditionnelle cours/TD
- ▶ Deuxième partie : Etude de papiers expérimentaux : Découverte du boson W à UA1 Oscillation $K^0 - \bar{K}^0$ Découverte du J/ψ Découverte du gluon Découverte du Higgs

Agenda

- mardi 11/03 : 3h cours (P. Verdier)
- mercredi 12/03 : 3h TD (G. Grenier)
- mardi 18/03 : 1h30 TD (G. Grenier) + 1h30 cours (P. Verdier)
- mercredi 19/03 : 1h30 TD (G. Grenier) + 1h30 cours (P. Verdier)
- mardi 25/03 : 3h TD (G. Grenier)
- mercredi 26/03 : 3h cours (P. Verdier)
- mardi 1/04 : 3h TD (G. Grenier), préparation analyse de papiers
- mercredi 2/04 : 3h cours (P. Verdier)
- mardi 8/04 : 3h TD (G. Grenier), présentation analyse de papiers
- mercredi 9/04 : 3h cours (P. Verdier), préparation analyse de papiers
- mardi 15/04 : 3h TD (G. Grenier)
- mercredi 16/04 : 3h cours (P. Verdier), présentation analyse de papiers

Introduction

Bref historique

Unités Particules et inte Ordres de grande

Les interactions fondamentales

Historique : découverte des particules élémentaires

- ▶ 1895 : Thomson découvre l'éléctron à l'aide de tubes cathodiques
- ▶ 1919 : Rutherford prouve l'existence du proton
- ▶ 1931 : Découverte du positron par Anderson (rayon cosmiques)
- ▶ 1932 : Découverte du neutron par Chadwick
- ▶ 1937 : Découverte du muon (m=100 MeV/c²), cousin de l'électron
- ▶ **1947** : Découverte du pion chargé π^{\pm} (méson)
- ▶ 1951 : Découverte de l'étrangeté (futur quark s)
- ▶ 1950-1960 : De nombreuses particules stables sont découvertes
- ▶ 1955 : Dévouverte de l'anti-proton
- ▶ 1956 : Mise en évidence du neutrino et de l'anti-neutrino (réacteur)
- ▶ **1962 :** 2 types de neutrinos : $\nu_{\rm e}$ et ν_{μ}
- ▶ 1967 : Sous-structure du proton (Bjorken) : les partons
- ▶ 1974 : Découverte du méson J/ψ : méson $c\bar{c}$
- ▶ 1976 : Découverte d'un 3^{me} lepton chargé : le tau
- ▶ 1978 : Découverte d'un 5^{eme} quark : le bottom
- ▶ 1979 : Mise en évidence du gluon à PETRA
- ▶ 1983 : Découverte des bosons Z et W au SPS
- ▶ 1995 : Découverte d'un 6^{eme} quark au Tevatron : le top
- **2000**: Observation du 3^{eme} neutrino : ν_{τ}
- ▶ 2012 : Découverte d'un boson scalaire de masse 126 GeV au LHC

Historique

- ▶ 1905-1928 : Mécanique quantique
 - Naissance et développements
 - Equations de Klein Gordon, de Dirac ...
- ▶ 1950 : Théorie quantique de l'électromagnétisme (QED)
- ▶ 1954 : Yang et Mills proposent les théories de jauges non-abélienne
- ▶ 1964 : Modèle des quarks uds (Gell-Mann et Zweig), SU(3)
- ▶ 1964 : Mécanisme de Higgs
- 1967 : Glashow, Salam, Weinberg : unification des forces électromagnétiques et faibles : prédiction des bosons Z/W et du boson de Higgs.
- 1970 : Mécanisme de GIM
- 1972 't Hooft et Veltman : les théories de jauges non-abélienne sont renormalisable
- ▶ 1973 : Théorie des interactions fortes (QCD)

Introduction

Bref historique

Unités

Particules et interactions
Ordres de grandeur
Les interactions fondamentales

Système d'unité

- Rappels
 - ► 1 eV = $1,602 \times 10^{-19}$ J
 - $c = 2,998 \times 10^8 \text{ m/s}$
 - $\hbar = h/2\pi = 1,055 \times 10^{-34} \text{ Js}$
 - $k_B = 1.381 \times 10^{-23} \text{ J/K}$
- $c = \hbar = k_B = 1$, et tout s'exprime en eV

- ▶ Unité de masse : $m = E/c^2$
 - ▶ 1 kg = $5,61 \times 10^{26}$ GeV (GeV/c^2)
 - Masse du proton = 938 MeV
 - Masse de l'électron = 511 keV
- Unité de distance :
 - ▶ 1 m = $5,07 \times 10^{15} \text{ GeV}^{-1}$ ($\hbar c/\text{GeV}$)
 - ▶ 1 fm⁻¹ = 197 MeV
- Unité de temps :
 - ▶ 1 s = 1,52 × 10^{24} GeV⁻¹ (\hbar/GeV)
- ▶ Unité de température : $E = k_B T$
 - ▶ 1 K = $8,617 \times 10^{-5}$ eV

Introduction

Bref historique Unités

Particules et interactions

Ordres de grandeur Les interactions fondamentales Le modèle standard

Les particules élémentaires

Les particules élémentaires peuvent être divisées en 2 catégories :

Les fermions : Ils ont un spin 1/2
 Ce sont les constituants élémentaires de la matière. On distingue :

Les leptons : 3 familles électron, muon, tau et leur neutrino respectif : ν_e, ν_μ, ν_τ
 Les quarks : 3 familles aussi u. d. c. s. t. b

Et leur anti-particule

- Les bosons : Ils ont un spin entier
 Ce sont les particules médiatrices des interactions fondamentales :
 - ► Force électrofaible : (unifiées dans le modèle standard)
 - γ , Z^0 , W^+ , W^- • Force forte :
 - 8 gluons
 - Gravité : Graviton ? pas encore observé

Il faut rajouter le boson de Higgs, particule scalaire (S=0) responsable de la masse des autres particules.

Les leptons

Les leptons sont les fermions insensibles à l'interaction forte.

		Masse			Masse
électron	e ⁻	0,511 MeV	neutrino électonique	ν_{e}	< 2,5 eV
muon	μ^-	105,7 MeV	neutrino muonique	ν_{μ}	< 170 keV
tau	$ au^-$	1777 MeV	neutrino tau	$\nu_{ au}$	< 18 MeV

- e^- , μ^- et τ^- ont une charge électrique Q=-1
- les neutrinos ont une charge électrique Q=0

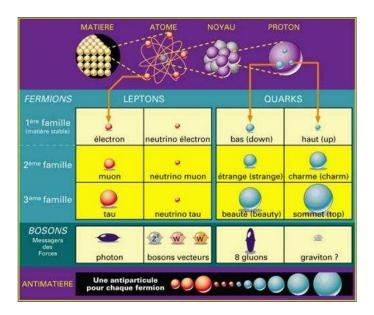
Chaque famille possède un nombre quantique additif qui se conserve dans toutes les interactions, sauf dans le phénomène d'interaction de neutrinos :

- ho $L_e(e^-) = L_e(\nu_e) = -L_e(e^+) = -L_e(\bar{\nu}_e) = 1$, et 0 pour autres fermions
- $L_{\mu}(\mu^{-}) = L_{\mu}(\nu_{\mu}) = -L_{\mu}(\mu^{+}) = -L_{\mu}(\bar{\nu}_{\mu}) = 1$, et 0 pour autres fermions
- $L_{\tau}(\tau^{-}) = L_{\tau}(\nu_{\tau}) = -L_{\tau}(\tau^{+}) = -L_{\tau}(\bar{\nu}_{\tau}) = 1$, et 0 pour autres fermions

Toute réaction doit alors conserver simultanément ces 3 nombres quantiques.

Le nombre leptonique total, $L=L_e+L_\mu+L_\tau$ est lui conservé dans toutes les processus, y compris les oscillations de neutrinos.

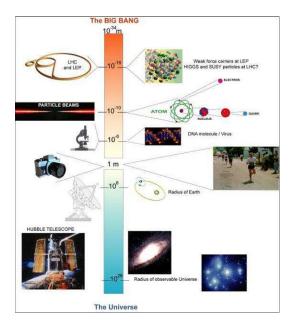
Les quarks


- Les quarks portent une charge éléctrique fractionnaire.
- Ils sont sensibles à toutes les interactions, et en particulier à l'interaction forte.
- Il existe 6 espèces de quarks que l'on différencie par une propriété appelée la saveur.

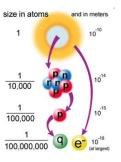
	1ere famille	2eme famille	3eme famille
Q=2/3	up	charm	top
	1,7 MeV < m < 3,1 MeV	1,18 < m < 1,34 GeV	m = 173,2 GeV
Q=-1/3	down	strange	bottom
	4,1 MeV < m < 5,7 MeV	80 MeV < m < 130 MeV	4,13 < m < 4,37 Ge

- ▶ A l'exception du quark top (plus lourd que le boson W, donc $t \to bW^+$), aucun quark n'a jamais été observé à l'état libre.
- Les particules que l'on observe sont des hadrons : les mésons (états qq) et les baryons (états qqq)

Particules élémentaires : résumé


Introduction

Unités
Particules et interactions

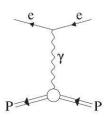

Ordres de grandeur

Les interactions fondamentales Le modèle standard

Ordres de grandeur

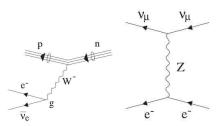
- ▶ De Broglie : $P = h/\lambda_D$
- Plus on augmente l'énergie de la sonde, plus faible est la distance sondée

Introduction


Bref historique
Unités
Particules et interactions
Ordres de grandeur

Les interactions fondamentales

Le modèle standard


Electromagnétisme

- Interaction entre particules chargées
- ► Force véhiculée par un boson de spin 1 et de masse nulle : le photon
- Portée infinie
- Intensité caractérisée par la constante de structure fine : $\alpha = e^2/4\pi\epsilon_0\hbar c = 1/137$
- \blacktriangleright Temps d'interaction et vie moyenne typique : $\sim 10^{-20}$ s

Interaction faible

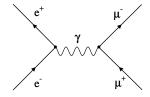
- Interaction de très courte portée qui met en jeu des courants d'échange neutre ou chargé
- ▶ 2 bosons massifs : W^{\pm} (m=80,4 GeV) et Z^{0} (m=91 GeV)
- ▶ Intervient dans la désintégration du neutron : $n \rightarrow pe^-\bar{\nu}$
- ▶ Constante de couplage : $g^2/4\pi = \alpha/\sin^2\theta_W$, où θ_W est l'angle de Weinberg et $\sin^2\theta_W = 0,231$. Cette constante de couplage est plus grande que la constante électromagnétique, mais amplitudes de transition proportionnelles à $g^2/M_{W,Z}^2$

Interaction forte

- L'interaction forte ne concerne que les quarks et les hadrons
- 8 gluons de masse nulle qui se couplent à une charge de couleur spécifique des quarks et des gluons
- constante de couplage très forte : $\alpha_s \simeq 1$
- ightharpoonup Temps d'interaction et vie moyenne typique : $\sim 10^{-23} \ s$
- ► Force de très courte portée (10⁻¹⁵m) : confinement



Particules virtuelles

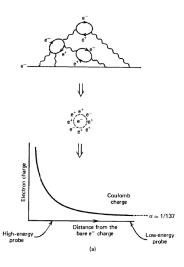

- En théorie quantique des champs, un électron peut émettre un photon puis le réabsorber
- Le temps de vie de ce photon est donné par la relation d'incertitude d'Heisenberg :

$$\Delta t \Delta E \geq 1$$

La durée de vie de ce photon doit satisfaire $\tau \simeq \Delta t \leq 1/\Delta E$ pour garantir la conservation de l'énergie pour des temps supérieurs à $1/\Delta E$

- Autre exemple : $e^+e^- \rightarrow \gamma \rightarrow \mu^+\mu^-$
- lacksquare $E_{\gamma}=E_{\mathrm{e}^+}+E_{\mathrm{e}^-}$ et $ec{p}_{\gamma}=ec{p}_{\mathrm{e}^+}+ec{p}_{\mathrm{e}^-}$
- ▶ Il est impossible de satisfaire $E_{\gamma}^2 \vec{p}_{\gamma}^2 = m_{\gamma}^2 = 0$
- le photon est hors couche de masse : Particule virtuelle
- Avec $E_{cm} = 200$ MeV, $\tau \le 10^{-24}$ s : le photon ne peut être observé

Constante de couplage de QED

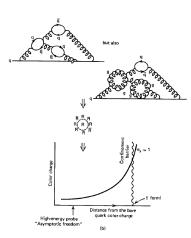

La constante de structure fine est le paramètre physique caractérisant la force des interactions électromagnétiques :

$$\alpha_e = \frac{e^2}{4\pi} = \frac{1}{137}$$

A faible distance (grande énergie de la sonde), le phénomène d'écrantage de la charge est du à la polarisation du vide (paires e^+e^- virtuelles).

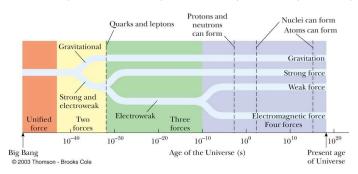
Le photon, médiateur de la force électromagnétique, a une charge électrique nulle.

Plus la distance est faible, plus la charge mesurée est importante.

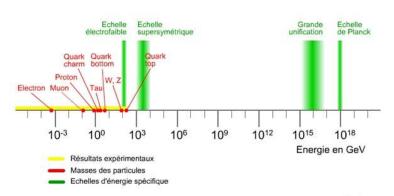

Constante de couplage de QCD

Pour l'interaction forte, la situation est différente :

$$\alpha_s(Q^2) = \frac{g^2(Q)}{4\pi}$$


Le gluon, médiateur de la force forte, porte une charge de couleur. Le gluon peut se coupler à d'autres gluons. Ceci conduit au phénomène d'anti-écrantage.

- ► A grand Q²: liberté asymptotique et QCD perturbative.
- ► A petit Q^2 : $\alpha_s(Q^2)$ augmente, physique non-perturbative, confinement des quarks et des gluons dans les hadrons.



Les interactions fondamentales

Interaction	Théorie	Médiateur	Masse	Portée	Puissance relative
Forte	QCD	8 gluons	0	$\sim 10^{-15}$	1
Electromagnétique	QED	photon	0	∞	10^{-2}
Faible	Electrofaible	W^+, W^-, Z^0	80/91 GeV	$\sim 10^{-18}$	10^{-7}
Gravitation	Relativité générale	graviton?	0	∞	10^{-38}

Echelle d'énergie

D 3xplus.com

Introduction

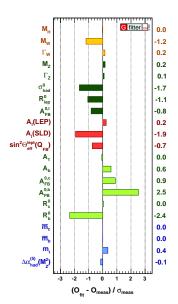
Bref historique
Unités
Particules et interactions
Ordres de grandeur
Les interactions fondamentales

Le modèle standard

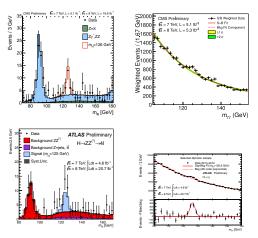
Le modèle standard

Le modèle standard représente notre connaissance actuelle du monde des particules :

► Théorie qui explique les interactions entre les particules à l'aide des symétries de jauge : SU(3)_C × SU(2)_L × U(1)_Y


multiplets	particules	Y	1	l ₃	Q
doublets gauches	$ \left(\begin{array}{c} \nu_{\rm e} \\ {\rm e}^- \end{array} \right)_L \left(\begin{array}{c} \nu_{\mu} \\ \mu^- \end{array} \right)_L \left(\begin{array}{c} \nu_{\tau} \\ \tau^- \end{array} \right)_L $	-1	1/2	$\left(\begin{array}{c} 1/2\\ -1/2 \end{array}\right)$	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$
singlets droits	$(e^-)_R (\mu^-)_R (\tau^-)_R$	-2	0	0	-1
doublets gauches	$ \left(\begin{array}{c} u \\ d \end{array}\right)_L \left(\begin{array}{c} c \\ s \end{array}\right)_L \left(\begin{array}{c} t \\ b \end{array}\right)_L $	1/3	1/2	$\left(\begin{array}{c} 1/2\\-1/2\end{array}\right)$	$\left(\begin{array}{c} 2/3 \\ -1/3 \end{array}\right)$
singlets droits	$ (u)_R (c)_R (t)_R $ $ (d)_R (s)_R (b)_R $	4/3 -2/3	0 0	0	2/3 -1/3

▶ Brisure spontanée de la symétrie électrofaible et mécanisme de Higgs pour expliquer la masse des particules


Les succès du modèle standard

 Les paramètres du modèle standard ont été mesurés avec une très grande précision

Découverte du boson de Higgs au LHC en 2012?

► Après 2 ans de prise de données à √s = 7 et 8 TeV au LHC, les expériences CMS et ATLAS annoncent la découverte d'un boson scalaire de masse 126 GeV compatible avec le boson de Higgs du modèle standard.

Au delà du modèle standard

- Dans le MS, les neutrinos ont une masse nulle, or on vient de découvrir que ce n'est pas le cas
- Le boson de Higgs découvert au LHC est il exactement celui du modèle standard?
- Les constantes de couplages des 3 interactions ne s'unifient pas à haute énergie dans le MS. On aimerait une théorie plus large permettant l'unification de toutes les interactions, y compris la gravité : supersymétrie, théorie des super-cordes...
- Origine de l'asymétrie matière-antimatière ?
- Quelle est la nature de la matière noire et de l'énergie noire qui représentent 95% de la masse de l'univers ?