Travaux Dirigés de Physique Nucléaire

Liquid drop model: binding energy, isobaric chains

Exercise 1: Energy balance

- ${f 1}$ / Find the inequalities between the masses of the neutral "father" and "son" atoms in the case of :
 - a β^- decay?
 - a β^+ decay?
 - an electron capture by the K level?
- 2 / What would be the experimental signatures?

Exercise 2: Binding energy per nucleon

Starting from the empirical spherical mass formula and neglecting the pairing term, show that the binding energy per particle (B/A) for symmetric nuclei N=Z=A/2 has a maximum close to the iron (Z=26). Estimate the value at the maximum.

Numerical values : $u_s = 18 \,\text{MeV}$, $u_c = 0.7 \,\text{MeV}$ and $u_v = 15.8 \,\text{MeV}$.

Exercise 3: Nucleus stability

- 1 / One considers a nucleus A_ZX with $A\gg 1$ and $Z\gg 1$. Express the Q-values of the following decays with respect to the binding energy and its derivatives :
 - neutron emission
 - proton emission
 - α -particle emission
 - symmetric fission $(A \longrightarrow A/2 \text{ and } Z \longrightarrow Z/2)$

2 / Deduce the stability of a $^{238}_{92}U$ nucleus w.r.t. those various decay modes and compute the released energy when the decay is possible. The pairing term will be neglected. Numerical values : $u_s=16.8 \mathrm{MeV},\ u_v=15.5 \mathrm{MeV},\ u_T=19 \mathrm{MeV},\ u_c=0.72 \mathrm{MeV}$ and $B_{\alpha}=28 \mathrm{MeV}$.

Exercise 4: Neutron stars

- 1 / Extrapolate the mass formula by adding a gravitational potential energy term to study the stability of a neutron star. The surface and pairing terms will be neglected w.r.t. the volume term.
- **2** / What conditions should fulfil the radius and the mass of the neutrons star? More accurate calculations give a limit mass of 0.1 M_{\odot} . Comment. $(m_n c^2 = 1.67 \ 10^{-27} \mathrm{kg} \ \mathrm{and} \ G = 6.673 \ 10^{-11} \, \mathrm{m}^3 \, \mathrm{kg}^{-1} \, \mathrm{s}^{-2}, \ M_{\odot} \sim 2 \ 10^{30} \, \mathrm{kg}).$

Exercise 5: Odd isobaric chain

For the isobaric chain A = 151 one gets the following mass excesses:

Z	Element	Mass excess
58	Ce	-62.620
59	Pr	-67.160
60	Nd	-70.957
61	Pm	-73.400
62	Sm	-74.587
63	Eu	-74.663
64	Gd	-74.198
65	Tb	-71.632
66	Dy	-68.902
67	Но	-63.803
68	Er	-58.500
69	Tm	-51.000
70	Yb	-41.100
71	Lu	-29.010

A	Z	Element	Mass excess
1	1	Н	+7.289
4	2	Не	+2.424
147	69	Tm	-34.820
150	70	Yb	-37.470

- 1 / Identify the stable isobar(s) of that serie.
- **2** / Give the decay modes of the unstable isobar(s). Summarize the results on a M(Z) scheme.
- 3 / For 151 Lu indicate all possible decay modes.
- $\mathbf{4}$ / In which Z domain should one look for spontaneous neutron emission in that isobaric chain?

Exercise 6: Even isobaric chain

The following nuclei belong to the A=114 isobaric chain :

$$_{46}\mathrm{Pd}$$
 $_{47}\mathrm{Ag}$ $_{48}\mathrm{Cd}$ $_{49}\mathrm{In}$ $_{50}\mathrm{Sn}$ $_{51}\mathrm{Sb}$ $_{52}\mathrm{Te}$

where

- ₄₆Pd is a β^- emitter with 1.4 MeV maximal energy of the electrons;
- ₄₇Ag gives a β^- of 4.6 MeV maximal energy, followed by a gamma emission of 0.56 MeV;
- $^{-}$ 51Sb gives two β^{+} , the first one of 2.7 MeV maximal energy followed by a two-gammas cascade of 0.9 MeV and 1.3 MeV, the second one with 3.6 MeV maximum energy followed by a 1.3 MeV gamma.

Find for that particular chain:

- 1 / the coefficients of the mass formula (parabolic form),
- 2 / the stable nucleus (nuclei),
- **3** / the various decay modes of unstable isobar(s) and the maximum energy of the emitted β .