Master de Physique 2012-2013

MQ TD-10 Évolution en temps

Exercice 1: RMN

Certaines questions de cet exercice ont déjà été traitées au TD #1.

1. On considère un moment magnétique classique $\vec{\mu}$. À l'approximation gyroscopique, le vecteur rotation, le moment cinétique \vec{j} et le moment magnétique $\vec{\mu}$ sont proportionnels, avec $\vec{\mu} = \gamma \vec{j}$. Montrer que la dynamique dans un champ \vec{B}_0 uniforme et constant est donnée par

$$\dot{\vec{\mu}} = \gamma \, \vec{\mu} \times \vec{B}_0 \; ,$$

et décrire le mouvement correspondant de l'extrémité de $\vec{\mu}$.

2. On ajoute un champ $\vec{B}_1(t)$ perpendiculaire à \vec{B}_0 , de module constant, mais tournant avec une pulsation ω_1 . Dans une base adaptée, le champ total est donc $\vec{B} = \{B_1 \cos(\omega_1 t), \, B_1 \sin(\omega_1 t), \, B_0\}$. Écrire l'équation différentielle gouvernant l'évolu-

tion de $\vec{\mu}$. Écrire $(\mathrm{d}\vec{\mu}/\mathrm{d}t)_1$ dans le référentiel tournant

avec \vec{B}_1 . En déduire le mouvement de l'extrémité de $\vec{\mu}$.

- 3. On veut évaluer $\langle \vec{\mu}(t) \rangle$ par la mécanique quantique en représentation d'Heisenberg. L'hamiltonien est $H = -\vec{\mu}.\vec{B}$. Montrer que $\langle \vec{\mu}(t) \rangle$ obéit à la même équation d'évolution qu'en mécanique classique.
- 4. On veut établir directement l'évolution d'un état

$$\psi(t) = a_{+}(t) |+\rangle + a_{-}(t) |-\rangle$$
,

en partant de $i\hbar \psi = H \psi$ avec le H précédent, \vec{B} précédent avec sa composante fixe et sa composante tournante et $\mu = \gamma \hbar \vec{\sigma}/2$, où les σ sont les matrices de Pauli habituelles.

Écrire les équations couplées reliant $\dot{a}_{\pm}(t)$ aux fonctions $a_{\pm}(t)$. Montrer qu'un changement de fonction $b_{\pm}(t) = \exp(\pm i\,\omega\,t)\,a_{\pm}(t)$ avec ω bien choisi permet de se ramener à un système d'équations à coefficient constants.

Résoudre ce système, et en déduire la probabilité \mathcal{P}_{+-} pour qu'un état initial pur $|+\rangle$ soit mesuré à l'instant t dans l'état $|-\rangle$.

Exercice 2 : Traitement approché

L'hamiltonien H, indépendant du temps, possède des états propres non dégénérés, d'énergie

 $E_k=\hbar\,\omega_k$ et de fonction d'onde φ_k à t=0, avec $\langle\varphi_k|\varphi_\ell\rangle=\delta_{k,\ell}$, qui évolue en $\Phi_k=\varphi_k\exp(-i\,\omega_k\,t)$. On se concentre désormais sur l'évolution d'un état qui est φ_0 au temps t=0, mais subit non pas H mais H+W, où W(t) est une perturbation dépendante ou indépendante du temps. On cherche la solution sous la forme

$$\Psi = \sum_{k} a_k(t) \, \Phi_k(t)$$

Montrer que

$$\dot{a}_{\ell} = -\frac{i}{\hbar} \sum_{k} a_{k} \langle \varphi_{\ell} | W | \varphi_{k} \rangle \exp(-i(\omega_{k} - \omega_{\ell})t)$$

Résoudre ces équations en faisant l'approximation de remplacer dans le membre de droite $a_k \to a_k(0) = \delta_{k0}$. Discuter de la validité de cette approximation.

Montrer que pour $\ell \neq 0$,

$$a_{\ell}(t) \simeq \frac{1}{i \, \hbar} \int_0^t W_{\ell 0} \, \exp(i \, \omega_{k0} \, t') \, \mathrm{d}t' \,,$$

où $\omega_{ij} = \omega_i - \omega_j$.

Montrer que si W est indépendant du temps, la probabilité de transition vers l'état ℓ est

$$P_{0\to\ell} = \frac{|W_{\ell 0}|^2}{\hbar^2} \, \frac{\sin^2(\omega_{l0}t/2)}{(\omega_{l0}/2)^2} \; ,$$

En s'appuyant sur

$$\int_{-\infty}^{+\infty} \sin^2 x / x^2 \, \mathrm{d}a = \pi \;,$$

montrer que

$$\lim_{t \to \infty} \sin^2(\alpha t) / \alpha^2 = \pi t \, \delta(\alpha) ,$$

et en déduire que la probabilité de transition par unité de temps tend vers

$$w_{\ell 0} = \frac{2\pi}{\hbar} |W_{\ell 0}|^2 \delta(E_{\ell} - E_0).$$

Commentaire.