Licence Pro, Physique, Examen d'Octobre 2009

1 Évolution avec terme de source

On considère l'équation différentielle pour l'évolution de la grandeur y(t) comme fonction de t,

$$\frac{\mathrm{d}y}{\mathrm{d}t} + y(t) = t .$$

- 1.1. Trouver une solution particulière polynomiale.
- 1.2. En déduire la solution la plus générale avec une constante arbitraire.
- 1.3. Trouver la solution correspondant à y = 0 pour t = 0.

2 Puissance dissipée dans un circuit

Un circuit électrique comprend en série une résistance R, une bobine d'auto-induction L et une capcité C. Il est alimenté par une source de tension alternative $U(t) = U_{\rm m} \cos(\omega t)$. On s'intéresse à la puissance moyenne P dissipée dans la résistance en régime permanent.

- 2.1. Donner l'expression de P.
- 2.2. Pour quelle valeur de ω obtient-on la valeur maximale P^{\max} de P, les autres caractéristiques $U_{\rm m}$, R, L et C restant constantes.
- 2.3. Pour quelles valeurs de ω obtient-on $P^{\max}/2$?

3 Seuil de réaction

On donne les masses, en MeV/c^2 ,

$$m_p = 938, 272 \ , \quad m_d = 1875, 613 \ , \quad m_t = 2808, 921 \ .$$

- 3.1. Quel est le "Q" de la réaction $p+t \to d+d$?
- 3.2. Quel est le seuil de la réaction dans le référentiel du centre de masse? On exprimera le résultat comme la quantité de mouvement incidente minimale, en MeV/c.
- 3.3. Même question dans le référentiel du tritium.
- 3.4. Même question dans le référentiel du proton.