# Chapitre 5 La fusion sur terre et dans les étoiles



### Fusion

- Origine : compétition des énergies coulombiennes et surfaciques
- La Fusion se produit car les noyaux légers ont une trop grande énergie de surface par rapport à leur volume.
   L'énergie de surface décroît quand ils fusionnent.
   L'énergie coulombienne croît, mais l'effet est plus petit.



Il est énergétiquement favorable pour les noyaux légers de fusionner pour libérer de l'énergie. Toutefois, les noyaux ont besoin d'énergie pour vaincre la barrière coulombienne Le processus le plus basique est :  $p + p \longrightarrow d + e^+ + \nu_e$  E<sub>f</sub> = 0.42 MeV

Dans ce cas, la hauteur de la barrière coulombienne est :

$$V = \frac{\alpha \hbar c}{r_0} = \frac{197}{137 \times 1.2} = 1.2 MeV$$

- Ces énergies sont aisément atteintes avec un accélérateur. En revanche, atteindre une haute densité de particule pendant un temps assez long est difficile à obtenir. C'est une condition obligatoire pour obtenir un taux de réactions de fusion suffisant pour la génération d'énergie.
- Dans les étoiles, il y a une grande densité de protons (10<sup>32</sup> m<sup>-3</sup>), and ces protons ont une énergie cinétique due au mouvement thermique.

Obtenir kT≈1MeV nécessite T≈10<sup>10</sup> K A l'intérieur du soleil, T≈10<sup>7</sup>K, i.e. <kT>≈1 keV

#### ⇒Effet tunnel requis

## Fusion dans le soleil

- Les particules dans le soleil suivent la distributions des vitesses de Maxwell-Boltzman.
- La probabilité de franchissement de la barrière par effet tunnel est une fonction qui dépend exponentiellement de l'énergie (donc de la vitesse)
   Les queues de la distribution de Maxwell-Boltzman sont importantes.



Considérons la réaction

 $p + p \longrightarrow d + e^+ + \nu_e$ 

Taux de Réaction /proton/s  $\approx$  5 10<sup>-18</sup> s<sup>-1</sup>

Valeur très faible, mais compensée par le très grand nombre de protons dans le soleil.

⇒A cette vitesse, le temps de vie du soleil est 10<sup>10</sup> années

#### Le soleil



Equilibre pression de radiation et gravitation

# Cycle pp-l



6

#### Processus de fusion dans le soleil

**Cycle PPI** 



► Bilan de la réaction:  $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e}$ 2e<sup>+</sup> s'annihilent avec 2e<sup>-</sup> → E<sub>e+e</sub>=2.04 MeV

- Energie libérée dans le cycle PPI = 26.7 MeV (énergie libérée par proton = 26.7/4=6.7 MeV)
- Les neutrinos émergent sans interactions avec ~2% de l'énergie. Le reste chauffe le cœur du soleil est est libéré sous forme d'énergie électromagnétique au niveau de la photosphère
- ▶ Luminosité observée :  $4 \times 10^{26}$  J/s →  $4 \times 10^{38}$  protons consommés chaque seconde

Autres cycles de l'hélium (l'hélium agit comme catalyseur):



- Pour T > 3×10<sup>7</sup>K, PPIII domine (les protons peuvent traverser la barrière coulombienne de <sup>7</sup>Be plus vite que le taux de CE dans <sup>7</sup>Be)
- Il y a d'autres cycles comme CNO (où C, N and O agissent comme des catalyseurs).
- Actuellement dans le soleil : PPI=56%, PPII=40%, PPIII=0.05%, CNO=3.2%

### **Cycle CNO**



## Les neutrinos solaires

 L'observation de neutrinos solaires permet de sonder directement le cœur du soleil ou les réactions thermonucléaires se produisent
 De nombreuse expériences mesurent le flux de neutrinos solaires



- Le flux attendu dépend de
  - Modèle standard du soleil(température, densité,...)
  - Probabilité de réaction avec les noyaux
- Le problème des neutrinos solaires : flux observé = 1/3 flux attendu
- ✓ Ce problème est été récemment résolut en observant un composante non-v<sub>e</sub> dans le flux de neutrinos
   ⇒Oscillations de neutrinos

#### Autres processus de fusion dans les étoiles

- Combustion de l'hydrogène : étoiles de la séquence principale, 10<sup>10</sup> ans, T≈2 10<sup>7</sup> K
- Quand l'hydrogène est épuisé → effondrement gravitationnel → La temperature augmente. Finalement, <sup>4</sup>He commence fusionner : étoiles géantes rouges, 10<sup>5</sup> ans, T≈2 10<sup>8</sup> K

<sup>4</sup>He + <sup>8</sup>Be  $\longrightarrow$  <sup>12</sup>C +  $\gamma$ <sup>4</sup>He + <sup>4</sup>He  $\longrightarrow$  <sup>8</sup>Be +  $\gamma$ <sup>4</sup>He + <sup>12</sup>C  $\longrightarrow$  <sup>16</sup>0 +  $\gamma$ 

Quand l'<sup>4</sup>He est épuisé, nouvel effondrement, hausse de la température, d'autres réactions de fusion s'allument : étoiles supergéantes, T≈ 4 10<sup>9</sup> K par exemple: <sup>12</sup>C + <sup>12</sup>C → <sup>24</sup>Mg + γ <sup>16</sup>O + <sup>16</sup>O → <sup>28</sup>Si + γ

⇒se termine proche des noyaux les plus liés avec <sup>56</sup>Ni. Ce noyau est β-instable et conduit au <sup>56</sup>Fe sur la ligne de stabilité.

#### Zones de fusion



### Nébuleuse du crabe



- Située à 6000 années lumière
- Explosion observée en 1054
- La supernova a ainsi ensemencé en éléments relativement lourds le gaz interstellaire.
- C'est à partir de ce mélange, enrichi en éléments "lourds", que de nouvelles étoiles pourront se former. Ainsi le système solaire reflète la composition du gaz interstellaire il y a environ 4,6 milliards d'années.

#### Supernova

#### Explosion d'une supernova



#### Nucléosynthèse des éléments lourds

Les éléments plus lourds sont formés dans les étoiles et les explosions de supernovae, par des réactions comme :



Ces processus sont basés sur la capture radiative de neutrons (pas de barrière coulombienne):

 $(A,Z)+n \rightarrow (A+1,Z)+\gamma$ 

- Si (A+1,Z) est stable, il va subir une nouvelle capture de neutron, et ainsi de suite...
- Cette opération se produit x fois, tant que le temps de vie de l'isotope final (A+x,Z) est grand comparé au taux de capture de neutrons. Ce taux dépend fortement du taux de capture de neutrons.
- Pour un faible flux de neutrons, la désintégration β domine et le noyau (A+x,Z) va se désintégrer vers(A+x,Z+1), et ensuite capturer un neutron. C'est le processus s (s pour slow). Ce processus se produit essentiellement dans les étoiles en équilibre, et suit la ligne de stabilité.
- Pour un grand flux de neutrons, le taux de captures de neutron est dominant jusqu'a ce qu'un isotope à très court temps de vie soit atteint. C'est le processus r (r pour rapide). De haut flux de neutrons sont produits pendant les phase explosives des étoiles (comme les supernovae). Ce processus explore le coté riche en neutrons de la vallée de stabilité.

#### Abondance des éléments dans l'univers



# **Origine des éléments**



|                       | Température                                                       | Étoile de 0,3 masse solaire         | Étoile de 1 masse solaire           | Étoile de 25 masses solaires |
|-----------------------|-------------------------------------------------------------------|-------------------------------------|-------------------------------------|------------------------------|
| Fusion de l'hydrogène | 4×10 <sup>6</sup> K ; 15×10 <sup>6</sup> K ; 40×10 <sup>6</sup> K | ~800 milliards d'années             | 10-12 milliards d'années            | 7 millions d'années          |
| Fusion de l'hélium    | 1×10 <sup>8</sup> K                                               | S'arrête avant d'atteindre ce stade | ~200 millions d'années              | 500 000 ans                  |
| Fusion du carbone     | 1×10 <sup>9</sup> K                                               |                                     | S'arrête avant d'atteindre ce stade | 200 ans                      |
| Fusion du néon        | 1,2×10 <sup>9</sup> K                                             |                                     |                                     | 1 an                         |
| Fusion de l'oxygène   | 2×10 <sup>9</sup> K                                               |                                     |                                     | 5 mois                       |
| Fusion du silicium    | 3×10 <sup>9</sup> K                                               |                                     |                                     | ~1 jour                      |

#### **Fusion controlée**

- Le challenge est d'atteindre des température suffisamment hautes pour permettre la fusion, dans des conditions contrôlées, avec un gain énergétique.
- Réactions possibles (d=<sup>2</sup>H=deuton, t=<sup>3</sup>H=tritium):

| $d + d \longrightarrow {}^{3}\mathrm{He} + n$ | Q=3.3 MeV  |
|-----------------------------------------------|------------|
| $d + d \longrightarrow t + p$                 | Q=4.0 MeV  |
| $d + t \longrightarrow {}^{4}\mathrm{He} + n$ | Q=17.6 MeV |

- La réaction d+t est particulièrement attractive
  - ✓ Plus grande énergie libérée ( $\alpha$  est très stable)
  - Barrière coulombienne la plus faible
- ► Le tritium est instable (T<sub>1/2</sub>=12 ans). Peut être produit via :  $n + {}^{6}Li \longrightarrow \alpha + t$
- Nécessite E≈10keV (i.e. T≈10<sup>8</sup>K) pour obtenir un taux de réaction raisonnable
  →Besoin de contrôler un plasma
  - Confinement magnétique : utilise un champ magnétique pour contrôler le plasma et le garder loin des murs
    Tokamac: machine produisant un champ magnétique toroïdal pour confiner le plasma
  - Chauffage du plasma :plusieurs méthodes.
    P. ex.: confinement inertiel : boulette contenant d+t bombardée avec des lasers ou un faisceau de particules pour la chauffer (→ laser Megajoule : 1.8 MJ laser)

#### ITER : premier plasma en 2020 Bur : 500MW pendant 1000s



