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Shell model and applications

#1: Harmonic oscillator
1 / Explain why the energies of the 1D oscillator

h =
P 2

2µ
+
K

2
X2 ,

are proportional to ~
√
K/µ. From now on, the

strength is denoted K = µω2.
2 / More explicitly, show that

h =
~ω
2
h̃ =

~ω
2

[
− d2

dx2
+ x2

]
,

where h̃ involves dimensionless quantities.
3 / Show that ϕ0(x) = π−1/4 exp(−x2/2) is the
normalised ground-state of h̃ with eigenvalue +1,
either directly from the Schrödinger operator or
from the lowering operator a = (d/dx+ x)/

√
2.

4 / Deduce the two next eigenvalues and eigen-
states of h̃ using the raising operator a† =
(−d/dx+ x)/

√
2.

5 / (optional) Show that h̃ has eigenvalues 1 + 2n,
where n = 0, 1, 2, . . . and normalised eigenvec-
tors [

2n n!
√
π
]−1/2

exp(−x2/2)Hn(x) ,

whereHn is an Hermite polynomial,1 or for n even
or odd, respectively[

n!

Γ(n+ 3/2)

]1/2
exp(−x2/2)L−1/2n (x2)[

n!

Γ(n+ 3/2)

]1/2
exp(−x2/2)xL1/2

n (x2) ,

where Lβn denotes an associated Laguerre polyno-
mial, of which some useful properties are listed in
Appendix.
6 / From the results on h̃, construct the two first
s-wave levels and the first p-level of

H =
p2

2µ
+
µω2

2
r2 .

Indicate the degeneracy of each level.
7 / H is now treated in spherical coordinates.
Show that the eigenfunctions can be seek as

Φn`m(r) = Rn`(r)Y
m
` (θ, ϕ)

where Y m` (θ, ϕ) is the usual spherical harmonics.
Indicate the meaning of the quantum numbers n, `
and m. Explain why the radial function does not
depend on m.
8 / (optional) Write the radial Schrödinger equa-
tion obeyed by Rn`(r) and deduce

Rn`(r) = A (αr)` exp[−α2r2/2]L`+1/2
n (α2r2) ,

A =

[
2n!α3

Γ(n+ `+ 3/2)

]1/2
,

9 / Show that the same energy levels ~ω(N+3/2)
are obtained as by the method of Cartesian coor-
dinates, with the same degeneracy d(N). Are the
eigenfunctions the same by the two methods?

#2: Proton density of 16O

1 / Show that for a spherical nucleus with closed
shells, the proton density reads

ρ(r) = 2
∑
n,`

occupied

2l + 1

4π
|Rn`(r)|2

2 / Show that for the ground state of 16O, with
2 protons in the 1s shell and 6 in 1p, the charge
density is

ρ(r) =
2α3

π3/2
(1 + 2α2r2) exp(−α2r2) .

Plot the graph of this function ρ(r).

1The Hermite polynomials fulfill the orthogonality relation
∫+∞
−∞ exp(−x2)Hn(x)Hm(x) = δnm2nn!

√
π.

exp(−x2/2)Hn(x) obeys y′′(x) + (2n+ 1− x2)y(x) = 0.
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#3: Energy levels, magic numbers
1 / Describe the energy spectrum corresponding to

• V (r) = µω2 r2/2 +D `2

• V (r) = µω2 r2/2 +D `2 + g `.s

starting from a pure oscillator with energy levels
E = ~ω(2n + ` + 3/2), using D = −0.025~ω
and g = −0.05~ω. Describe the degeneracy for
the pure oscillator and the above perturbed oscilla-
tors. Deduce the first magic numbers.

2 / Predict the spin and parity for the ground state,
first excited state and one of the next excited states
of the following nuclei: 209

82Pb, 209
83Bi, 41

20Ca. For
both neutrons and protons, the shells are occupied
in the following order:

1s1/2 1p3/2 1p1/2 1d5/2 2s1/2 1d3/2

1f7/2 2p3/2 1f5/22p1/2 1g9/2

2d5/2 1g7/2 1h11/2 2d3/2 3s1/2

1h9/2 2f7/2 2f5/2 3p3/2 1i13/2 3p1/2

2g9/2 1i11/2 3d5/2 2g7/2 . . .

#4: Schmidt lines

1 / Estimate the magnetic moment of a nucleus
with an odd number A of nucleons, assuming it is
due only to the last nucleon. The magnetic mo-
ment operator reads:

µ = µN (gs s+ g` `) ,

with gsp = 5.59, gsn = −3.82, g`p = 1 et g`n = 0
in units of the nuclear magneton, e~/(2mp) =
3.15×10−14 MeV/T, using the projection theorem

for a vector operator V :

〈αjm|Vk|αjm〉 =

〈αjm|V .J |αjm〉
〈αjm|J2|αjm〉

× 〈αjm|Jk|αjm〉

2 / Estimate the expectation value of µ within the
state |jm〉 with m = j.

3 / As an application, estimate the magnetic mo-
ment of the ground state of the nuclei 17

9F and 17
8O.

Appendix: Laguerre polynomials
The associated Laguerre polynomials Lβn are or-
thogonal polynomials, with increasing degree and
increasing number of nodes, for the measure
exp(−u)uβ , in u ∈ [0,∞[, with normalisation∫ ∞

0

exp(−u)uβ Lβn(u)Lβm(u) du =

δnm Γ(β + n+ 1)/n! .

Some examples are L1/2
0 (u) = L

3/2
0 (u) = 1 and

L
1/2
1 (u) = 3/2− u.

They obey, among others, the following differ-
ential equation

u y′′(u) + (β + 1− u) y′(u) + n y(u) = 0 ,

and it is straightforward to show that
exp(−x2/2)xβ+1/2 Lβn(x2) obey

y′′(x)+

(
4n+ 2β + 2− x2 +

1− 4β2

4x2

)
y(x) = 0 .

A generating function is

(1− z)−β−1 exp[x z/(z − 1)] =
∑
n

Lβn(x) zn .

2


