Travaux Dirigés de Physique Nucléaire

Liquid drop model: binding energy, isobaric chains

Exercise 1: Energy balance

1 / Find the inequalities between the masses of the neutral "father" and "son" atoms in the case of:

- a β^- decay?
- a β^+ decay?
- an electron capture by the K level?

2 / What would be the experimental signatures?

Exercise 2: Binding energy per nucleon Starting from the empirical spherical mass formula and neglecting the pairing term, show that the binding energy per particle (B/A) for symmetric nuclei N = Z = A/2has a maximum close to the iron (Z = 26). Estimate the value at the maximum. Numerical values: $u_s = 18$ MeV, $u_c =$

 $u_s = 15 \text{ MeV}, \ u_c = 0.7 \text{ MeV}$ and $u_v = 15.8 \text{ MeV}.$

Exercise 3: Nucleus stability

1 / One considers a nucleus ${}^{A}_{Z}X$ with $A \gg 1$ and $Z \gg 1$. Express the *Q*-values of the following decays with respect to the binding energy and its derivatives:

- neutron emission
- proton emission

- α -particle emission
- symmetric fission $(A \longrightarrow A/2 \text{ and } Z \longrightarrow Z/2)$

2 / Deduce the stability of a ${}^{238}_{92}U$ nucleus w.r.t. those various decay modes and compute the released energy when the decay is possible. The pairing term will be neglected. Numerical values: $u_s = 16.8$ MeV, $u_v = 15.5$ MeV, $u_T = 19$ MeV, $u_c = 0.72$ MeV and $B_{\alpha} = 28$ MeV.

Exercise 4: Neutron stars

1 / Extrapolate the mass formula by adding a gravitational potential energy term to study the stability of a neutron star. The surface and pairing terms will be neglected w.r.t. the volume term.

2 / What conditions should fulfil the radius and the mass of the neutron star? More accurate calculations give a limit mass of 0.1 M_{\odot} . Comment.

 $(m_n c^2 = 1.67 \ 10^{-27} \text{kg} \text{ and } G = 6.673 \ 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}, \ M_{\odot} \sim 2 \ 10^{30} \text{ kg}).$

Exercise 5: Odd isobaric chain For the isobaric chain A = 151 one gets the following mass excesses:

Ζ	Element	Mass excess
58	Ce	-62.620
59	Pr	-67.160
60	Nd	-70.957
61	Pm	-73.400
62	Sm	-74.587
63	Eu	-74.663
64	Gd	-74.198
65	Tb	-71.632
66	Dy	-68.902
67	Но	-63.803
68	Er	-58.500
69	Tm	-51.000
70	Yb	-41.100
71	Lu	-29.010

Α	Ζ	Element	Mass excess
1	1	Н	+7.289
4	2	He	+2.424
147	69	Tm	-34.820
150	70	Yb	-37.470

 ${\bf 1}$ / Identify the stable isobar(s) of that serie.

2 / Give the decay modes of the unstable isobar(s). Summarize the results on a M(Z) scheme.

 $\mathbf 3$ / For $^{151}\mathrm{Lu}$ indicate all possible decay modes.

4 / In which Z domain should one look for spontaneous neutron emission in that isobaric chain?

Exercise 6: Even isobaric chain

The following nuclei belong to the A = 114 isobaric chain:

 $_{46}$ Pd $_{47}$ Ag $_{48}$ Cd $_{49}$ In $_{50}$ Sn $_{51}$ Sb $_{52}$ Te

where

- $_{46}$ Pd is a β^- emitter with 1.4 MeV maximal energy of the electrons;
- ${}_{47}\text{Ag}$ gives a β^- of 4.6 MeV maximal energy, followed by a gamma emission of 0.56 MeV;
- ${}_{51}$ Sb gives two β^+ , the first one of 2.7 MeV maximal energy followed by a two-gamma cascade of 0.9 MeV and 1.3 MeV, the second one with 3.6 MeV maximum energy followed by a 1.3 MeV gamma.

Find for that particular chain:

1 / the coefficients of the mass formula (parabolic form),

 $\mathbf{2}$ / the stable nucleus (nuclei),

3 / the various decay modes of unstable isobar(s) and the maximum energy of the emitted β .