Chapter 3
The size and shape of the nuclei

Nuclear ground-state shapes
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1- Introduction

The size of nucleus is determined using various methods
* Methods using electromagnetic interaction

— Electron scattering

— X-ray spectrum of muonic atom
— Mirror nuclei

* Methods using the strong nuclear interaction
— q scattering
— n scattering
— p, Tt scattering
— Lifetimes of a particle emitters

The most important of these methods are based on angular
scattering of incoming particles
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An incoming particle can probe the matter up to a distance:
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2- Differential cross-section

The angular distribution of scattered particles is not necessarily uniform.

N\

> @ \solid angle, dQ
Target

Beam

AN 4, = Number of particles scattered into dQ

ANdQ — (I)NTdO'

do ANdQ ANGULAR DIFFERENTIAL CROSS-SECTION

d_Q ~ ® N dS) units : L2/Sr

This differential cross section is the number of particles scattered per unit time
and solid angle divided by the incident flux and by the number of target nuclei
defined by the beam area
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Most experiment do not cover 4mt solid angle

Angular distributions provide more information about the
mechanism of the interaction

Integration on the whole solid angle gives the total scattering

cross-section:
/ —dQ



3- Geiger-Marsden Experiment

1909 : Elastic scattering of a-particles (z=2 and
E..,=5MeV) on Gold Nuclei (Z=79)

* Experience : H. Geiger and E. Marsden

* Interpretation : E. Rutherford

Classical mechanics : hyperbola trajectory,
scattering angle depends on the impact
parameter b, and the kinetic energy, E,,,, of
the incident a-particle

do 2w bdb

d—Q(e) T dQ

d—J(H) _ (zZozhc)2 1
d""’  \ 4By, ) sin60/2
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d N Jd(cos @)

'O’r-

197Au (“He, He)

| I |

nm ni

sin® (6/2)

e ——— e i

.

Some experimental precautions :
- Beam:
monoenergetic and isolated particles
- Target:
thin in order to avoid multiple scattering
- Scattered particles:
Statistical considerations

e Results compatible with the
scattering by a point charge

e Atomic model with a central
nucleus, radius R< 4.5 101 m
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4- Nuclear Size and density

Focus on methods based on elastic diffusion of incident
particles

Electron scattering:

— ©: EM interaction

— ®: not sensible to neutron distribution

Nuclear scattering:
— ©:. sensible to neutron and proton distribution

— ©: sensible to strong interaction (and EM), not accurately described.
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4.1- Scattering in QM

Consider a beam of particle scattering from a fixed potential V(r).

Elastic scattering:a+b > a+b
only directions of momenta are changing : ||p;|| = ||pf|| = p
the target recoil is negligible.

q = 2p sin g Momentum transfer (units fm-?)
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The scattering rate is characterized by the interaction cross-section

['  Number of particles scattered per unit time
O —= — — -
) Incident flux

Use Fermi’s Golden Rule to calculate the transition rate : T' = 27| M s;|*p(E¥)
Where My, is the matrix element and p(E;) is the density of final states.

We will use a first order perturbation theory (Born approximation), initial and
final state are described by a plane wave (free particle).

The cross-section calculation requires :
Normalized wave functions

2. Matrix element in perturbation theory
3. Expression for incident flux
4. Expression for density of states



1.

2.

Normalized wave function:

Plane wave = solution of the form: 1) = Ne~#{(Ft=p-7)

Normalize wave-functions to one particle in a box of side L:
[pF = N* =1/L°

N = (1/L)3/?

1 . L
. —i(Et—p.7)
Y= 1,3/2 € g

Matrix Element: (contains the interesting physics of the interaction)

My = (s |H|¢s) = /@b;‘iﬁwi 437

1

=23 [ TV (PeTTdF
1 iq-r — 13 =

— 73 e V (r)d°r
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3.

Incident flux:
Consider a “target” of area A and a beam of incident particles traveling at

velocity v; towards the target. Any incident particle within a volume v.A
will cross the target area every second.

1
(I)Z’U@'AX’I?/X—

A

Where n is the number density of incident particles: n = 1/L*

The flux is the number of incident particles crossing a unit area per unit

time:
(%

(I):ﬁ
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Density of states:
for a box of side L, states are given by the periodic boundary conditions:

. 2T
p — (pxapyapZ) — f(nwanyanz)

Each state occupies a volume (2m/L)3 in p space (neglecting spin).

Number of states between p and p+dp in solid angle dQ

L\’ L\*
dN = (—> d’p = (—) p?dpdQ

2T 2T
dN L\ ,
= — = — d(?
p(p) i (%) p
Density of states in energy :
2 2 2 dE p
E=p"4+m°=2EdE =2pdp = — = —
dp FE

AN  dN dp L\’ ,E L\’
E)=-—— = = (=) p*=da= (- pEdO
P =98 T ap dE ( ) P (%) o
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Putting everything together:
do = g2r|Myi|*p(Ey)

do = L ZW‘LgfequV d3q{ (2—) pr By dQ)

do

aQ — (zw)%z

fezq TV dg_)‘ pPf Ef

* Non relativistic scattering:

— Elastic diffusion : p=pF=mv, do U‘ etd- rV d3 —*’

— E~m (p<<m) dQ2 N R (27f)2

Scattering cross-section
in the Born approximation

e Relativistic scattering:

— pFEFE dQl, (277)2 Ue ‘
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Scattering form a Yukawa potential:

(exchange of a massive scalar field, not seen in these lectures):

mnr

Yukawa Potential : V(7)) = g%

r

[ €TV () 37 = L

mZ+q2 (see demo 1)

do| _ _4B%g®
dQlg — (m2+g?)?

Scattering from a Coulomb potential:

2

Coulomb Potential : V(1) = €

Admegr

V(r)
MeV

| 2 t/fm

" Yukawa-Potential

-50

(8

r

i.e. a special case of Yukawa potential with g=-a and m=0

iy
72

[TV (F) d37 =
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Non relativist coulomb scattering: Rutherford scattering
For Rutherford scattering, we are in the limit where the target recoil is
neglected and the scattered paéticle is non-relativist.

Elastic scattering: ¢ = 2p sin 5

2
do m?> < (_47704) _ Am?a?

d_Q Rutherford o (277)2 q2 o 16]94 sin® 0/2

with Ex = p?/2m

do o

m Ruther ford - 16E%{ Sil’l4 9/2

Reintroduction of h and c (via dimensional analysis):

do _ [ ahc 1
dQ Ruther ford - 4EK Sin4 0/2
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e Relativist coulomb scattering: Mott scattering
The limit where the target recoil is neglected and the scattered particle is
relativist spin % is called Mott scattering.

Elastic scattering: ¢ = 2p sing ~2F sing
2 2 2 2

do _ FE > I Yige% _ 4FE o

dQ g = (2m)2 ( q> ) ~ 16FE*sin*6/2

d o 1

o
dQ|lp — 4EZ sin%0/2

* For a relativistic spin % particle: use Dirac equation instead of Schrodinger.
- there is an extra cos?(6/2) factor due to the overlap between intial/final
spin part of the wave-functions. Just Quantum Mechanics of spin %.

do a2 cos® /2

dQ }Mott — 1EZ sin%0/2
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4.2- Electron scattering

Use electron as a probe to study deviations from a point-like
nucleus:

e 5 e
* Electromagnetic interaction .

* Coulomb potential: V (7) = —Z2he Y
e

Nucleus, Z protons

.. do _ (Zahc\?2 cos®6/2
* Mott scattering: d—Q’MOm — ( 2F ) sin® 6/2
« To measure a distance of =1 fm, need energy

A

ultra-relativist domain
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* Theory does not match experiment !

1072 153 MeV electrons on gold (Z=79)

10724
10-2°
1026
1027
1028

10°%°

en cm?/stéradian

do
dQ

10-3°L

10~Jl

v’\'b

1032 1 1 ] 1 1
30° 50°  70° 90°  110° 130° 150° 170°
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4.3- Scattering with en extended nucleus

V (7) depends on the distribution of charge in nucleus

Potential energy of electron due to charge dQ:

dV = ——cd<_

drreg|r—r'|

where dQ = Zep(r')dr!

Charge distribution p(7") normalized to unity

50v®:_/‘¥@“)@r__

Ameg | — 1| |7“—T’|

This formula is the convolution of the Coulomb potential Zo/r with the charge
distribution p(r)
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In order to evaluate the matrix element Mg;:

My; = / ' TV (7) d3F

We can use the convolution theorem : FT(f*g)=FT(f)xFT(g),
in order to evaluate this matrix element

iq. 7 o
My; = —Za/ ¢ d?’F/ p(7)e' T A3

r

do do 5
—= | — [F(q)]
dQ dQ Rutherford

where [F'(q) = /p(fF’)ei‘Wd?’F is called the FOrRM FACTOR and is the Fourier

transform of the charge distribution

. . do do
This can be generalized by: — — [ —— F(q)|?
dQ (dﬂ> Mott | (Q)|
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In the case of a spherical symmetry, p=p(r), a simple calculation shows that

[T singr .
F(q) —/0 p(r) qr 4mr=dr (see demo 2)
and
1 >0 singr
= — F d
o) =5 [ F@=E g

So the experimental method is:

1. measure the cross-section.

2. infer F(q).

3. Fourier transform to get the charge distribution.

Experimentally, it is really difficult to measure the cross-section for the high
values of g (very small cross sections), so the last steps are often:

3. Assume a parameterization for the nuclear density = Fourier transform
to get a “theoretical” F (q)

4. Compare “theoretical” and “experimenta
the charge distribution.

II)

F(q) to get the parameters of



* So far, we have not considered the spin of the target.

* A more refined description, takes into account a magnetic
form factor due the magnetic moments distribution in the

nucleus

3—5 = (ngw) Sm40/2 (|F (q)|? cos? 6/2 — Q‘JW|Fm(q)|2 sin’ 6/2)

92 = (38) stoue ||Fe(@)? = 557 tan® 0/2| Fru(q) 2]

 Other improvement : Nuclear recoil

9 = (3 atone 7 [P (@) — 5 tan?6/2|Fru ()
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4.4 Charge density

The most simple way to describe the charge density is a sharp edge

distribution (hard sphere):
0 A

Po

>
R r

In this case, the form factor is:
3(sihx — x cosx
Flg) =2 )

with x=gR

and has the following shape:

It is in fact the spherical Bessel
function j,(x).

First zeros: x=1.43xm, x=2.46XT

3

1.0 5 g
: 450 MeV electrons on 35Ni
. B=4.1fm
< :
=
%
10°7° ]
10 i
1072 — L — . inimes : : o
100 200 300 400 500 600 700 . | gMeVic
s
Beonocon e dh o B0 Bl 100,, 120 H(degrees) :

‘Fig.3.3 The square of the form factor |F(q’f)|2 as a function of q for a modc] I nucleus‘

having @ = 4.1 fm. The abscissa is also marked in inverse fermis (q,h) and in degrees
for an angle of scatter at a fixed nucleus for mcndcnt clcctrons of 450 MeV Note that
the ordinate is logarithmic. :
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A more realistic parameterization of the nuclear charge
density is a Fermi-like parameterization:

o(r) 4

p(0)

— Ris the “radius” of the nucleus. p(R)=p(0)/2

— d governs the drop of the density at the surface.
p(R-d)=0.62xp(0) and p(R+d)=0.38xp(0)
The 90% to 10% thickness is 4.39xd

IlI- Size and shape of the nuclei
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There is nothing mysterious about form factors — similar to

diffraction of plane waves in optics.

The finite size of the scattering centre
introduces a phase difference between
plane waves “scattered from different points

In space”.
point-like exponential Gaussian Uniform rerm!
7 sphere unction
p(7) p
F unity “dipole” Gaussian
(q ) k
P
Dirac Particle Proton 6Li 4Ca

‘NOTE that for a point charge the form factor is unity.
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4.5 Experimental results

do

en cm?/stéradian

dQ

10—23 L

10-244

10--25

10-—26

10*27

10~28

10*29

10-3°L

10~Jl

10*32

p(r}) unit. arbit.

QO - N W
T

1

1

30°

1
70°

90°

110°

130°

150°

170°

VQ

153 MeV electrons on gold (Z=79)

FIGURE 1.8

Distribution angulaire de la diffusion
élastique d’électrons de 153 MeV sur l'or.
On constatera que [P’approximation,
(d6/df2),, de charge ponctuelle n’est pas
réaliste. Le meilleur accord avec I’expe-
rience est obtenu dans I’hypothése B d’une
distribution de charge p(r) a bord diffus
(courbe théorique en ftrait plein passant
au mieux par les points expérimentaunx).

IlI- Size and shape of the nuclei

28



1

58
28

450 MeV electrons on

29

ize and shape of the nuclei

S



Using the Fermi parameterization: e scattering data

p(0) ——
T p—
10( ) 1 e(r;R)

—

2.50 -

. 225 | .
For all nuclei

* R=r,AY3withr, 1.2 fm
(central density almost
identical for all nuclei)

1.50 - W
* Nuclear density: ¢ &\
constant for all nuclei =
P,=0.08 nucleons/fm3 1.00
saturation of nuclear forces 075
—> short distance interaction

2,00 [~ 7]

L75 | -

[x10'° coulomb/cm?]

Charge density

0.50

e d=2.5fm(governed by the
range of the nuclear 0.25
interaction)

10
Radial distance [fm]

IlI- Size and shape of the nuclei 30



Aside : Nucleon charge density

* Scattering experiments of high energy electrons

26

16

Charge Deneily (a.u.)

05 1.0 R
Redius (Fermi)
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4.6- Nuclear density

 Up to now, we have used electromagnetic probes
— charge density = charge radius

* Use a nuclear projectile to probe the nuclear density:
n, p, Tt (The charge distribution in neutron and proton is not
homogenous)
more complicated due to the unknown expression of the
nuclear force—>optical model of the nucleus

V('r) — Vc(r) Coulomb potential for charged particles only
-V (7“) The nuclear potential well
—i W fo(r) The imaginary potential representing absorption

of the incident nucleon

_|_

The spin-orbit interaction

f.(r) are often chosen as fermi-like distribution
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Summary

The total density of the nucleus is the sum of the neutron and
the proton density.

Experimental results suggest, the same shape for neutron and

proton density.
Pz _ Z

PN N

Prot = pz(1 + %)

If N=Z (symmetric nuclear matter),

Prot = 2po = 0.17 nucleons/ fm”

The radius is : R = ry, A3 with ry=1.2 fm
Hard sphere approx: r,=(3/4np, )/3=1.1 fm

In a neutron star: p=1038 neutrons/cm3 = 2 10 kg/cm3



4.7- Nuclear radii from Muonic atoms

Muons brought to rest in matter, get trapped in atomic orbit and have a
higher probability than electrons of spending time inside the nucleus

mass | ulifetime

~1/Zm ~Z°m ~207 m, 2 ps

The muons make transitions to low energy levels, emitting X-rays, before
decaying

* For hydrogen with electrons: r=a, =5x10*fm (Bohr radius)

* Forlead with muons : r = a,/(Zm)=(5x10%)/(82x207)=3 fm
to be compared to the radius of the lead : R = ry A1/ = 1.2x208/3~7 fm
- the muons spend a large fraction of their time inside the nucleus.

Transition energy (2p—2>1s) : 16.41 MeV (Bohr theory) vs 6.02 (measured)
=7 ¢ective aNd E are changed relative to electrons = Radius measurement

[lI- Size and shape of the nuclei
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4.8- Nuclear Radii from Mirror nuclei

* Mirror nuclei : Mirror nuclei are a pair of nuclei where the number of
protons and neutrons are interchanged
(e.g. 11C and 1'B)

* Mirror nuclei have different masses due to the p-n difference and the
different coulomb terms in the binding energy:

M(A,Z+4+1)—-M(A,Z)=AE. + my +me — my,

where AE_is the coulomb energy difference between the two nuclei.
A classical calculation, where the nucleus is considered to be analogous to
a uniformly charged sphere of radius R, shows that

~ 3a(2Z2+1)

AFE,
D R
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So the radius can be determined from the mass difference
between the two atoms. This mass difference can be
measured from the B* decay spectrum of the (A,Z+1) member
of the pair:

FC—EB + et + 1,

as we have seen : M(''C) — M("'B) = 2m. + Ky'®*
The radius is then:

3a(27 4+ 1) 1
2 Kénax_mp+me+mn

R —




5- Nuclear shape

The nucleus are not |

necessarily spherical

Superdeformation
2:1

Hyperdeformation
31
Extreme deformations =

Oblate
superdeformation

12

Octupole Y34

Octupole Y=
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Deformation of nuclei
(B is related to Q)

Hartree-Fock Calculations




5.1- Radius mean square

For a nucleus with a hard sphere density:
fooopr247rr2 dr fOR r4 dr B 3R2
fooop47rr2 dr foR 2dr D

<7’ >=

For example, the analysis of hyperfine transitions show an
identical <r?> value for 8%Hg and 2°°Hg, although the different
nucleon number should give different values. These values
can be explained by a different deformation.

In general, light nuclei are spherical, heavy nuclei are
deformed (magic numbers excepted)
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5.2- Nuclear moments

» Static electromagnetic properties of nuclei are specified in
terms of electromagnetic moments, which give information
about the way magnetism and charge is distributed
throughout the nucleus.

* The two most important moments are:
— Electric Quadrupole Moment: Q
— Magnetic Dipole Moment: p

* Electric moments:
Depends on the charge distribution inside the nucleus and are
a measure of Nuclear shape (contours of constant charge
density)
— Q=0 : spherical nucleus
— Large Q: Highly deformed nucleus



The nuclear shape is parameterized by a multipole expansion of the external
field or potential.

—

/p(?j’)d?’r’ = Ze

=7

= | — [2 12 / 1/2
r—r| =|r r'“ — 2rr’ cos @ . —
| | [ + ] r=distance to observer

r’=distance to charge element

= |7 — /|1 = r 1 4+ "2 /r? —2"”7/ cos 0] ~1/2

- [ / / / / 2
= 7=yl =1 1—%(7;—22—2%6080)+%(7;—22—2%0086’) +]
= |7 — |7l ] 1+—cos«9+”/2(3(:os3«9—1) }

Expansion in powers of r’/r (Legendre polynomials).

1

1 1 -
- [Ze + — ; /r’cos@p( )d3r + 53 r?(3cos? 6 — 1) p(r')d3r! + ]

r2

Vir) =
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Let r define z-axis: s =" cosf
V() = g 2o+ [2otn)a% +
47rr
Quantum limit: (7} = [4(r7)|?
e EO Moment: /¢*¢ d3r/

* E1 Moment: /¢*Z¢ 4>

e E2 Moment: /w*(Szz - 7“/2)¢ d’r’

charge

electric dipole

electric quadrupole

Nuclear wavefunctions have definite parity: |¢(77)\2 = W(—F)\z

= Electric dipole is always zero.

IlI- Size and shape of the nuclei
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Electric Quadrupole Moment:

Q= [ve - dr

Units: m? or barns
If spherical symmetry, <z?>=1/3 <r>> -2 Q=0

Q>0 - Prolate: Q<0 - Oblate:
“Rugby balloon” like “Flying saucer” like

IlI- Size and shape of the nuclei
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A non-zero quadrupole moment Q indicates that the charge
distribution is not spherically symmetric.

* A non spherical nucleus will have rotational states of motion

which by their regularity, are identifiable in the spectrum of
the excited states.

* Electric quadrupole moments of nuclei can be measured from
hyperfine splitting of atomic spectral lines, from the rotational
spectra, and other spectroscopic techniques.



