
Page 4 of 82 Basic Data Analysis Using ROOT 5/23/14

A guide to this tutorial
If you see a command in this tutorial that’s preceded by “[]”, it means that it is a ROOT
command. Type that command into ROOT without the “[]” symbols. For example, if you see

[] .x treeviewer.C

it means to type .x treeviewer.C at a ROOT command prompt.
If you see a command in this tutorial preceded by “>” it means that it is a UNIX command. Type
that command into UNIX, not into ROOT, and without the “>” symbol. For example, if you see

> man less

it means to type man less at a UNIX command prompt.
If you take the pyroot part of this tutorial, the Python prompt is “>>>”. For example:

> python
>>> from ROOT import TH1

Paragraphs%in%this%style%are%hints,%tips,%and%advice.%You%may%be%able%to%get%through%this%

tutorial%without%reading%any%of%this%text…%but%I%wouldn’t%count%on%it!%%

If%you’re%sharp%of%eye%and%keen%of%sight,%you’ll%also%notice%that%I%use%different%character%

styles%for%Linux commands,%program variables,%and%menu%items.%%

5/23/14 Basic Data Analysis Using ROOT Page 11 of 82

Walkthrough: Starting ROOT (5 minutes)
You are going to need at least two windows open during this class. One window I'll call your
“ROOT command” window; this is where you'll run ROOT. The other is a separate “UNIX
command” window. On Unix, you can create a second window with the following command;
don't forget the ampersand (&):

> xterm &

You can also just run the Terminal application again, or select Open%Terminal... from the File
menu of a running Terminal application.

I%like%to%use%File6>Open%Tab…%instead,%but%you%can%use%whichever%mode%you%prefer.%I%

suggest%you%try%all%the%methods%to%find%out%which%one%suits%you.%%

To actually run ROOT, just type:

> root

The%window%in%which%you%type%this%command%will%become%your%ROOT%command%

window.%

First%you'll%see%the%white/and/blue%ROOT%window%appear%on%your%screen.%It%will%

disappear,%and%a%brief%“Welcome%to%ROOT”%display%will%be%written%on%your%command%

window.%%

If%you%grow%tired%of%the%introductory%graphics%window,%type%root -l%instead%of%root%
to%start%the%program.%That’s%“dash/ell,”%not%“dash/one.”%

Click on the ROOT window to select it, if necessary.
You can type ? (or .h) to see a list of ROOT commands, You'll probably get more information
than you can use right now. Try it and see.
For the moment, the most important ROOT line command is the one to quit ROOT. To exit
ROOT, type .q. Do this now and then start ROOT again, just to make sure you can do it.

Sometimes%ROOT%will%crash.%If%it%does,%it%can%get%into%a%state%for%which%.q%won’t%work.%
Try%typing%.qqq%(three%q)%if%.q%doesn’t%work;%if%that%still%doesn’t%work,%try%five%q,%then%
seven%q.%Unfortunately,%if%you%type%ten%q,%ROOT%won’t%respond,%“You’re%welcome.”%

OK,%that’s%a%dumb%joke;%I%should%leave%the%humor%to%xkcd.%But%the%tip%about%.qqq,%
.qqqqq,%and%.qqqqqqq%is%legitimate.%Sometimes%I%find%just%typing%q%or%using%Ctrl/C%
also%works.%

Page 12 of 82 Basic Data Analysis Using ROOT 5/23/14

Walkthrough: Plotting a function (15 minutes)
This%example%is%based%on%the%first%example%in%Chapter%2%of%the%ROOT%Users%Guide%(page%

10).%I%emphasize%different%aspects%of%ROOT%than%the%Users%Guide,%and%it’s%a%good%idea%to%

go%over%both%the%example%in%the%Guide%and%the%one%below.%

Let's plot a simple function. Start ROOT and type the following at the prompt:
[] TF1 f1("func1","sin(x)/x",0,10)
[] f1.Draw()

Note%the%use%of%C++%syntax%to%invoke%ROOT%commands.
9
%ROOT%may%help%you%out%with%

context/based%colors%for%the%keywords%it%recognizes.%%

If%you%have%a%keen%memory%(or%you%type%.h%on%the%ROOT%command%line),%you'll%see%that%

neither%TF1%nor%any%of%its%methods%are%listed%as%commands,%nor%will%you%find%a%detailed%

description%of%TF1%in%the%Users%Guide.%The%only%place%that%the%complete%ROOT%

functionality%is%documented%is%on%the%ROOT%web%site.%

Go to the ROOT web site at <http://root.cern.ch/> (did you remember to bookmark this site?),
click on Reference%Guide, then on Pro%Version…, then on TF1; you may want to use the browser
menu Edit6>Find%and search on TF1 to locate that link. Scroll down the page; you'll see some
documentation and examples, the class methods, then method descriptions.

Get%to%know%your%way%around%this%web%site.%You'll%come%back%often.%

Also note that when you executed f1.Draw() ROOT created a canvas for you named c1.
“Canvas” is ROOT's term for a window that contains ROOT graphics; everything ROOT draws
must be inside a canvas.10
Bring window c1 to the front by left-clicking on it. As you move the mouse over different parts
of the drawing (the function, the axes, the graph label, the plot edges) note how the shape of the
mouse changes. Right-click the mouse on different parts of the graph and see how the pop-up
menu changes.
Position the mouse over the function itself (it will turn into a pointing finger or an arrow). Right-
click the mouse and select SetRange. Set the range to xmin=-10, xmax=10, and click OK.
Observe how the graph changes.

(continued on the next page)

9 I’m simplifying. ROOT doesn’t use a C++ compiler, but an interpreter called CINT that duplicates most of the

C++ language specification. This can be important if you’re an advanced C++ programmer; for example, features
introduced in C++11 are not available in CINT. (They’ll be available in ROOT 6, which has not yet been
released; we’re using ROOT 5.)

10 I’m simplifying again. The actual rule is that everything ROOT draws must be inside a “TPad.” Unless you want
to add graphics widgets to a window (e.g., buttons and menus), this distinction won’t matter to you.

5/23/14 Basic Data Analysis Using ROOT Page 13 of 82

Walkthrough: Plotting a function (continued) (10 minutes)
Let's get into a good habit by labeling our axes. Right-click on the x-axis of the plot, select
SetTitle, enter "x [radians]", and click OK. Let's center that title: right-click on the x-axis again,
select CenterTitle, and click OK.

Right/clicking%on%the%title%gives%you%a%TCanvas%pop/up,%not%a%text%pop/up;%it’s%as%if%the%
title%wasn’t%there.%Only%if%you%right/click%on%the%axis%can%you%affect%the%title.%In%object/

oriented%terms,%the%title%and%its%centering%are%a%property%of%the%axis.%

It's%a%good%practice%to%always%label%the%axes%of%your%plots.%Don't%forget%to%include%the%

units.%

%

Figure 3: http://xkcd.com/833/ by Randall Munroe

Alt-text: “And if you labeled your axes, I could tell you exactly how MUCH better.”

Do the same thing with the y-axis; call it "sin(x)/x". Select the RotateTitle property of the y-axis
and see what happens.
You can zoom in on an axis interactively. Left-click on the number "2" on the x-axis, and drag to
the number "4". The graph will expand its view. You can zoom in as much as you like. When
you've finished, right-click on the axis and select UnZoom.

Page 14 of 82 Basic Data Analysis Using ROOT 5/23/14

Walkthrough: Plotting a function (continued)
You have a lot of control over how this plot is displayed. From the View menu, select Editor.
Play around with this a bit. Click on different parts of the graph; notice how the options
automatically change. Select View6>Toolbar; among other options, you can see how you can
draw more objects on the plot. There's no simple Undo command, as there might be in a
dedicated graphics program, but you can usually right-click on an object and select Delete from
the pop-up menu.
Select Style from the Edit menu. Select some different styles and hit Apply; when you choose a
style, it might de-select the window, so you may have to hit Apply twice. This can be handy if
you discover a “look and feel” that you like for your plots.
Some of the pop-up menu items have question-mark links in them. While holding down the right
button (to keep the menu active), move the mouse to the “?” and press the left button. There’ll be
a pause for a few seconds, then you’ll see a description of what the item means. You can also
select an option, then click on the online%help button. Try this for a few options.

Note%that%the%actual%helpfulness%of%the%descriptions%varies%considerably.%%

There’s%also%a%Help%menu%on%the%upper/right%hand%corner%of%this%window.%Most%ROOT%

windows%have%such%a%menu.%Take%look%at%its%contents.%I%usually%find%that%the%information%

is%enigmatic,%but%sometimes%there’s%something%useful.%%

If%you%“ruin”%your%plot,%you%can%always%quit%ROOT%and%start%it%again.%We're%not%going%to%

work%with%this%plot%in%the%future%anyway.%

5/23/14 Basic Data Analysis Using ROOT Page 15 of 82

Exercise 1: Detective work (10 minutes)
Duplicate the following plot:

Figure 4: Some detective work is required to duplicate this plot.

Look%at%the%TF1%command%above.%If%class%TF1%will%generate%a%one/dimensional%function,%

what%class%might%generate%a%two/dimensional%function?%%

If%TF1%takes%a%function%name,%formula,%and%x/limits%in%its%constructor,%what%arguments%

might%a%two/dimensional%function%class%use?%Where%could%you%check%your%guess?%%

You%probably%figured%out%how%to%draw%something,%but%you%got%a%contour%plot,%not%a%

surface%plot.%Here’s%another%hint:%you%want%the%give%the%option%"surf1"%(with%quotes)%to%

the%Draw%method.%

If%you're%wondering%how%to%figure%out%that%“surf1”%was%an%valid%option%to%give%to%

Draw():%Unfortunately,%this%is%not%obvious%in%the%current%ROOT%web%site%or%
documentation.%If%you’re%clever%and%make%a%couple%of%guesses,%you'll%finally%end%up%in%

the%description%of%the%THistPainter%class;%this%describes%all%the%available%Draw()%
options.%

The%point%of%this%exercise%is%to%prepare%you%for%the%kind%of%documentation%searches%you%

often%have%to%do%to%accomplish%something%in%ROOT;%for%example,%the%exercises%in%Parts%

Four%and%Five%of%this%tutorial.%Finding%the%“surf1”%option%is%trivial%by%comparison!%

Page 16 of 82 Basic Data Analysis Using ROOT 5/23/14

Walkthrough: Working with Histograms (15 minutes)
Histograms%are%described%in%Chapter%3%of%the%ROOT%Users%Guide.%You%may%want%to%look%

over%that%chapter%later%to%get%an%idea%of%what%else%can%be%done%with%histograms%other%

than%what%I%cover%in%this%class.%

Let's create a simple histogram:
[] TH1D h1("hist1","Histogram from a gaussian",100,-3,3)

Let’s%think%about%what%these%arguments%mean%for%a%moment%(and%also%look%at%the%

description%of%TH1D%on%the%ROOT%web%site).%The%ROOT%name%of%the%histogram%is%

hist1.%The%title%displayed%when%plotting%the%histogram%is%“Histogram%from%a%gaussian”.%

There%are%100%bins%in%the%histogram.%The%limits%of%the%histogram%are%from%/3%to%3.%

Question:%What%is%the%width%of%one%bin%of%this%histogram?%Type%the%following%to%see%if%

your%answer%is%the%same%as%ROOT%thinks%it%is:%

[] h1.GetBinWidth(0)

Note%that%we%have%to%indicate%which%bin’s%width%we%want%(bin%0%in%this%case),%because%

you%can%define%histograms%with%varying%bin%widths.
11
%

If you type
[] h1.Draw()

right now, you won’t see much. That's because the histogram is empty. Let’s randomly generate
10,000 values according to a distribution and fill the histogram with them:

[] h1.FillRandom("gaus",10000)
[] h1.Draw()

The%"gaus"%function%is%pre/defined%by%ROOT%(see%the%TFormula%class%on%the%ROOT%web%
site;%there’s%also%more%on%the%next%page%of%this%tutorial).%The%default%Gaussian%

distribution%has%a%width%of%1%and%a%mean%of%zero.%%

Note%the%histogram%statistics%in%the%top%right/hand%corner%of%the%plot.%Question%(for%

those%who've%had%statistics):%Why%isn't%the%mean%exactly%0,%nor%the%width%exactly%1?%

Add another 10,000 events to histogram h1 with the FillRandom method (use up-arrow to
enter the command again). Click on the canvas. Does the histogram update immediately, or do
you have to type another Draw command?

11 For advanced users: Why would you have varying bin widths? Recall the “too many bins” and “too few bins”

examples that I showed in the introduction to the class. In physics, it’s common to see event distributions with
long “tails.” There are times when it’s a good idea to have small-width bins in regions with large numbers of
events, and large bin widths in regions with only a few events. This can result in having roughly the same
number of events per bin in the histogram, which helps with fitting to functions as discussed in the next few
pages.

5/23/14 Basic Data Analysis Using ROOT Page 17 of 82

Walkthrough: Working with Histograms (continued) (10 minutes)
Let’s put some error bars on the histogram. Select View6>Editor, then click on the histogram.
From the Error pop-up menu, select Simple. Try clicking on the Simple%Drawing box and see
how the plot changes.

The%size%of%the%error%bars%is%equal%to%the%square%root%of%the%number%of%events%in%that%

histogram%bin.%With%the%up/arrow%key%in%the%ROOT%command%window,%execute%the%

FillRandom%method%a%few%more%times;%draw%the%canvas%again.%Question:%Why%do%the%

error%bars%get%smaller?%Hint:%Look%at%how%the%y/axis%changes.%

You%will%often%want%to%draw%histograms%with%error%bars.%For%future%reference,%you%could%

have%used%the%following%command%instead%of%the%Editor:%

[] h1.Draw("e")

Let's create a function of our own:
[] TF1 myfunc("myfunc","gaus",0,3)

The “gaus” (or gaussian) function is actuallyP0e
−

x−P1()
P2

⎛
⎝⎜

⎞
⎠⎟

2

where P0, P1, and P2 are “parameters” of
the function.12 Let’s set these three parameters to values that we choose, draw the result, and then
create a new histogram from our function:

[] myfunc.SetParameters(10.,1.0,0.5)
[] myfunc.Draw()
[] TH1D h2("hist2","Histogram from my function",100,-3,3)
[] h2.FillRandom("myfunc",10000)
[] h2.Draw()

Note that we could also set the function's parameters individually:
[] myfunc.SetParameter(1,-1.0)
[] h2.FillRandom("myfunc",10000)

What's%the%difference%between%SetParameters%and%SetParameter?%If%you%have%
any%doubts,%check%the%description%of%class%TF1%on%the%ROOT%web%site.%

12 For advanced users: In ROOT's TFormula notation, this would be "[0]*exp(-((x-[1])/[2])^2)" where "[n]"

corresponds to Pn. I mention this so that when you become more experienced with defining your own
parameterized functions, you can use a different formula:
 [] TF1 myGaus("user","[0]*exp(-.5*((x-[1])/[2])^2)/([2]*sqrt(2.*pi))")

 This may seem cryptic to you now. It’s just a gaussian distribution with a different normalization so that P0
divided by the bin width becomes the number of events in the histogram:
 [] myGaus.SetParameters(10.,0.,1.)
 [] hist.Fit("user")
 [] Double_t numberEquivalentEvents = myGaus.GetParameter(0) /
hist.GetBinWidth(0)

Page 18 of 82 Basic Data Analysis Using ROOT 5/23/14

Walkthrough: Working with multiple plots (optional) (5 minutes)
If%you're%running%short%on%time,%you%can%skip%this.%

We have a lot of different histograms and functions now, but we're plotting them all on the same
canvas, so we can't see more than one at a time. There are two ways to get around this.

First, we can create a new canvas by selecting New%Canvas from the File menu of our existing
canvas; this will create a new canvas with a name like c1_n2. Try this now.
Second, we can divide a canvas into “pads.” On the new canvas, right-click in the middle and
select Divide. Enter nx=2, ny=3, and click OK.
Click on the different pads and canvases with the middle button; if you have a mouse with a
scroll wheel, the wheel is “clickable” and serves as the middle button. Observe how the yellow
highlight moves from box to box. The “target” of the Draw() method will be the highlighted
box. Try it: select one pad with the middle button, then enter

[] h2.Draw()

Select another pad or canvas with the middle button, and type:
[] myfunc.Draw()

At%this%point%you%may%wish%that%you%had%a%bigger%monitor!%

5/23/14 Basic Data Analysis Using ROOT Page 19 of 82

Walkthrough: Saving and printing your work (15 minutes)
By now you've probably noticed the Save sub-menu under the File menu on the canvas. There
are many file formats listed here, but we’re only going to use three of them for this tutorial.

Select Save6>canvas&name.C from one of the canvases in your ROOT session. Let’s assume for
the moment that you’re working with canvas c1, so the file “c1.C” is created. In your UNIX
window, type

> less c1.C

(If%you%get%complaints%about%a%file%not%found,%the%name%of%the%canvas%is%“cee/one,”%not%

“cee/ell.”)%As%you%can%see,%this%can%be%an%interesting%way%to%learn%more%ROOT%

commands.%However,%it%doesn't%record%the%procedure%you%went%through%to%create%your%

plots,%only%the%minimal%commands%necessary%to%display%them.%%

Next, select Save6>c1.pdf from the same canvas; we’ll print it later.

Finally, select Save6>c1.root from the same canvas to create the file "c1.root". Quit ROOT with
the .q command, and start it again.
To re-create your canvas from the ".C" file, use the command

[] .x c1.C

This%is%your%first%experience%with%a%ROOT%“macro,”%a%stored%sequence%of%ROOT%

commands%that%you%can%execute%at%a%later%time.%One%advantage%of%the%“.C%method”%is%

that%you%can%edit%the%macro%file,%or%cut/and/paste%useful%command%sequences%into%

macro%files%of%your%own.
13
%

You%can%also%start%ROOT%and%have%it%execute%the%macro%all%in%a%single%line:%

> root c1.C

Quit ROOT and print out your Postscript file with the command
> lpr -Pbw-research c1.pdf

This%may%be%point%at%which%you'll%notice%that%the%default%background%color%for%ROOT%

plots%is%not%pure%white.%You%may%want%to%experiment%more%with%Edit6>Style;%I%find%that%
the%Plain%style%usually%does%what%I%want.%Don’t%forget:%after%you%select%a%style,%you%may%

have%click%the%Apply%button%a%couple%of%times.%%

If%you%want%to%print%directly%from%the%canvas%using%File6>Print,%then%type%%
lpr -Pbw-research%%
in%the%first%text%box%and%leave%the%second%one%empty.%

13 This is still useful if you’re working in pyroot, though you’ll have to do some translation from C++ to python.

Page 20 of 82 Basic Data Analysis Using ROOT 5/23/14

Walkthrough: The ROOT browser (5 minutes)
The%ROOT%browser%is%a%useful%tool,%and%you%may%find%yourself%creating%one%at%every%

ROOT%session.%See%page%21%of%the%ROOT%Users%Guide%to%find%out%how%to%make%ROOT%

start%a%new%browser%automatically%each%time%you%start%ROOT.
14
%

One way to retrieve the contents of file “c1.root” is to use the ROOT browser. Start up ROOT
and create a browser with the command:

[] TBrowser tb

In the left-hand pane, scroll to the folder with the same name as your home directory.15 Scroll
through the list of files. You'll notice special icons for any files that end in ".C" or ".root". If you
double-click on a file that ends in ".C": if the Editor tab is in front ROOT will display its
contents in the editor window; if the Canvas tab is in front, ROOT will execute its contents.
Click on the Canvas tab, then double-click on c1.C to see what happens.
Now double-click on c1.root, then double-click on c1;1.

Don’t%see%anything?%Click%on%the%Canvas%1%tab%in%the%browser%window.%%
What%does%"c1;1"%mean?%You're%allowed%to%write%more%than%one%object%with%the%same%

name%to%a%ROOT%file%(this%topic%is%part%of%an%optional%lesson%later%in%this%tutorial).%The%

first%object%has%";1"%put%after%its%name,%the%second%";2",%and%so%on.%You%can%use%this%

facility%to%keep%many%versions%of%a%histogram%in%a%file,%and%be%able%to%refer%back%to%any%

previous%version.%

At%this%point,%saving%a%canvas%as%a%".C"%file%or%as%a%".root"%file%may%look%the%same%to%you.%

But%these%files%can%do%more%than%save%and%re/create%canvases.%In%general,%a%".C"%file%will%

contain%ROOT%commands%and%functions%that%you'll%write%yourself;%".root"%files%will%

contain%complex%objects%such%as%n/tuples.%

The ROOT browser has other “gee-whiz” features. For example, if you if select Browser6>New%
HTML, it will open a new tab and display the ROOT class index web page. Feel free to use this
built-in web browser if you wish, though I find Firefox to be more convenient.

As%nifty%as%the%ROOT%browser%is,%I’m%not%going%to%encourage%you%to%use%it.%In%the%work%

that%you’ll%do%this%summer,%you’ll%probably%reach%the%limits%of%what%it%can%do%for%you,%

especially%if%you%have%to%work%with%large%numbers%of%files,%histograms,%n/tuples,%or%plots;%

I’d%rather%you%understood%how%to%do%things%using%C++%or%python%commands.%

Still,%it’s%nice%to%know%that%it’s%there,%in%case%(as%the%name%suggests)%you%want%to%browse%

quickly%through%a%couple%of%ROOT%files.%

14 Hmm. There’s a file called rootlogon.C in ~seligman/root-class. I wonder what it does?
15 The folder hierarchy may be puzzling to you; your home directory will be in

/a/home/<server>/<account>. For now, don’t worry about this. If you’d like to know more, there’s a
page on automount at http://www.nevis.columbia.edu/twiki/bin/view/Nevis/Automount.

5/23/14 Basic Data Analysis Using ROOT Page 21 of 82

Walkthrough: Fitting a histogram (15 minutes)
I created a file with a couple of histograms in it for you to play with. Switch to your UNIX
window and copy this file into your directory:16

> cp ~seligman/root-class/histogram.root $PWD

Go back to your browser window. (If you've quit ROOT, just start it again and start a new
browser.) Click on the folder in the left-hand pane with the same name as your home directory.

Double-click on histogram.root. You can see that I’ve created two histograms with the names
hist1 and hist2. Double-click on hist1; you may have to move or switch windows around,
or click on the Canvas%1 tab, to see the c1 canvas displayed.

You%can%guess%from%the%x/axis%label%that%I%created%this%histogram%from%a%gaussian%

distribution,%but%what%were%the%parameters?%In%physics,%to%answer%this%question%we%

typically%perform%a%“fit”%on%the%histogram:%you%assume%a%functional%form%that%depends%

on%one%or%more%parameters,%and%then%try%to%find%the%value%of%those%parameters%that%

make%the%function%best%fit%the%histogram.%

Right-click on the histogram and select FitPanel. Under Fit%Function, make sure that Predef61D
is selected. Then make sure gaus is selected in the pop-up menu next to it, and Chi6square is
selected in the Fit%Settings6>Method pop-up menu. Click on Fit at the bottom of the panel. You'll
see two changes: A function is drawn on top of the histogram, and the fit results are printed on
the ROOT command window.

Interpreting%fit%results%takes%a%bit%of%practice.%Recall%that%a%gaussian%has%3%parameters%(P0,%
P1,%and%P2);%these%are%labeled%"Constant",%"Mean",%and%"Sigma"%on%the%fit%output.%ROOT%

determined%that%the%best%value%for%the%"Mean"%was%5.98±0.03,%and%the%best%value%for%

the%"Sigma"%was%2.43±0.02.%Compare%this%with%the%Mean%and%RMS%printed%in%the%box%on%

the%upper%right/hand%corner%of%the%histogram.%Statistics%questions:%Why%are%these%values%

almost%the%same%as%the%results%from%the%fit?%Why%aren't%they%identical?%

On the canvas, select Fit%Parameters from the Options menu; you'll see the fit parameters
displayed on the plot.

As%a%general%rule,%whenever%you%do%a%fit,%you%want%to%show%the%fit%parameters%on%the%

plot.%They%give%you%some%idea%if%your%“theory”%(which%is%often%some%function)%agrees%

with%the%“data”%(the%points%on%the%plot).%

(continued on the next page)

16 If you’re going through this class and you’re not logged onto a system on the Nevis Linux cluster, you’ll have to

get all the files from my web site: http://www.nevis.columbia.edu/~seligman/root-class/files/

Page 22 of 82 Basic Data Analysis Using ROOT 5/23/14

Walkthrough: Fitting a histogram (continued)
As a check, click on landau on the FitPanel's Fit%Function pop-up menu and click on Fit again;
then try expo and fit again.

You%may%have%to%click%on%the%Fit%button%more%than%once%for%the%button%to%“pick%up”%the%

click.%%

It%looks%like%of%these%three%choices%(gaussian,%landau,%exponential),%the%gaussian%is%the%

best%functional%form%for%this%histogram.%Take%a%look%at%the%"Chi2%/%ndf"%value%in%the%

statistics%box%on%the%histogram%("Chi2%/%ndf"%is%pronounced%"kie/squared%per%[number%of]%

degrees%of%freedom").%Do%the%fits%again,%and%observe%how%this%number%changes.%

Typically,%you%know%you%have%a%good%fit%if%this%ratio%is%about%1.%

The%FitPanel%is%good%for%gaussian%distributions%and%other%simple%fits.%But%for%fitting%large%

numbers%of%histograms%(as%you’d%do%in%Parts%Four%and%Five)%or%more%complex%functions,%

you%want%to%learn%the%ROOT%commands.%

To fit hist1 to a gaussian, type the following command:
[] hist1.Fit(“gaus”)

This does the same thing as using the FitPanel. You can close the FitPanel; we won’t be using it
anymore.

Go back to the browser window and double-click on hist2.
You've%probably%already%guessed%by%reading%the%x/axis%label%that%I%created%this%histogram%

from%the%sum%of%two%gaussian%distributions.%We’re%going%to%fit%this%histogram%by%defining%

a%custom%function%of%our%own.%

Define a user function with the following command:
[] TF1 func("mydoublegaus","gaus(0)+gaus(3)")

Note%that%the%internal%ROOT%name%of%the%function%is%"mydoublegaus",%but%the%C++%name%

is%func.%

What%does%"gaus(0)+gaus(3)"%mean?%You%already%know%that%the%"gaus"%function%uses%

three%parameters.%"gaus(0)"%means%to%use%the%gaussian%distribution%starting%with%

parameter%0;%"gaus(3)"%means%to%use%the%gaussian%distribution%starting%with%parameter%

3.%This%means%our%user%function%has%six%parameters:%P0,%P1,%and%P2%are%the%"constant",%
"mean",%and%"sigma"%of%the%first%gaussian,%and%P3,%P4,%and%P5%are%the%"constant",%"mean",%

and%"sigma"%of%the%second%gaussian.%

(continued on the next page)

5/23/14 Basic Data Analysis Using ROOT Page 23 of 82

Walkthrough: Fitting a histogram (continued)
Let's set the values of P0, P1, P2, P3, P4, and P5, and fit the histogram.17

[] func.SetParameters(5.,5.,1.,1.,10.,1.)
[] hist2.Fit(“mydoublegaus”)

It’s%not%a%very%good%fit,%is%it?%This%is%because%I%deliberately%picked%a%poor%set%of%starting%

values.%Let’s%try%a%better%set:%

[] func.SetParameters(5.,2.,1.,1.,10.,1.)
[] hist2.Fit(“mydoublegaus”)

These%simple%fit%examples%may%leave%you%with%the%impression%that%all%histograms%in%

physics%are%fit%with%gaussian%distributions.%Nothing%could%be%further%from%the%truth.%I’m%

using%gaussians%in%this%class%because%they%have%properties%(mean%and%width)%that%you%

can%determine%by%eye.%%

Chapter%5%of%the%ROOT%Users%Guide%has%a%lot%more%information%on%fitting%histograms,%

and%a%much%more%realistic%example.%

If%you%want%to%see%how%I%created%the%file%histogram.root,%go%to%the%UNIX%window%and%

type:%

> less ~seligman/root-class/CreateHist.C

In%general,%for%fitting%histograms%in%a%real%analysis,%you’ll%have%to%define%your%own%

functions%and%fit%to%them%directly,%with%commands%like:%

[] TF1 func("myFunction","<...some parameterized TFormula...>")
[] func.SetParameters(...some values...)
[] myHistogram.Fit("myFunction")

For%a%simple%gaussian%fit%to%a%single%histogram,%you%can%always%go%back%to%using%the%

FitPanel.%

17 It may help to view the PDF file with this tutorial, and cut-and-paste the commands from here into your ROOT

window. You can find this file at http://www.nevis.columbia.edu/~seligman/root-class/.

 Warning: Don’t fall into the trap of cutting-and-pasting every command from this tutorial into ROOT. Save it for
the more complicated commands like SetParameters or file names like
~seligman/root-class/AnalyzeComments.C. You want to get the “feel” for issuing commands interactively
(perhaps with the tricks described on page 8), and that won’t happen if you just type Ctrl-C/click/Ctrl-V over and
over again.

Page 24 of 82 Basic Data Analysis Using ROOT 5/23/14

Walkthrough: Saving your work, part 2 (15 minutes)
So%now%you’ve%got%a%histogram%fitted%to%a%complicated%function.%You%can%use%Save%as%
c1.root,%quit%ROOT,%restart%it,%then%load%canvas%"c1;1"%from%the%file.%You'd%get%your%

histogram%back%with%the%function%superimposed...%but%it's%not%obvious%where%the%

function%is%or%how%to%access%it%now.%

What%if%you%want%to%save%your%work%in%the%same%file%as%the%histograms%you%just%read%in?%

You%can%do%it,%but%not%by%using%the%ROOT%browser.%The%browser%will%open%.root%files%in%

read/only%mode.%To%be%able%to%modify%a%file,%you%have%to%open%it%with%ROOT%commands.%

Try the following: Quit ROOT (note that you can select Quit%ROOT from the Browser menu of
the browser or the File menu of the canvas). Start ROOT again, then modify "histogram.root"
with the following commands:

[] TFile file1("histogram.root","UPDATE")

It%is%the%"UPDATE"%option%that%will%allow%you%to%write%new%objects%to%"histogram.root".%

[] hist2.Draw()

For%the%following%two%commands,%hit%the%up/arrow%key%until%you%see%them%again.%
18
%

[] TF1 func("user","gaus(0)+gaus(3)")
[] func.SetParameters(5.,2.,1.,1.,10.,1.)
[] hist2.Fit("user")

Now%you%can%do%what%you%couldn't%before:%save%objects%into%the%ROOT%file:%

[] hist2.Write()
[] func.Write()

Close%the%file%to%make%sure%you%save%your%changes%(optional;%ROOT%usually%closes%the%file%

for%you%when%you%quit%the%program):%

[] file1.Close()

Quit ROOT, start it again, and use the ROOT browser to open "histogram.root". You'll see a
couple of new objects: "hist2;2" and "user;1". Double-click on each of them to see what you've
saved.

You%wrote%the%function%with%func.Write(),%but%you%saw%user;1%in%the%file.%Do%you%
see%why?%It%has%to%do%with%the%name%you%give%to%C++%objects,%versus%the%internal%name%

that%you%give%to%ROOT.%There’s%more%about%this%on%page%27.%I%wanted%to%point%it%out%so%

that%you%were%aware%that,%though%they%seem%closely%connected%at%times,%C++%and%ROOT%

are%two%different%entities.%
Chapter%11%of%the%ROOT%Users%Guide%has%more%information%on%using%ROOT%files.% %

18 In case you care: ROOT stores your last 80 or so ROOT commands in the file “.root-hist” in your home

directory; that’s where it gets the lines you see with the up-arrow key. Similarly, the UNIX shell stores the last
5000 commands you’ve typed in .sh-history in your home directory.

5/23/14 Basic Data Analysis Using ROOT Page 25 of 82

Walkthrough: Variables in ROOT NTuples/Trees (10 minutes)
I’ve created a sample ROOT n-tuple for you. Quit ROOT. Copy the example file:

> cp ~seligman/root-class/experiment.root $PWD

Start ROOT again. Start a new browser with the command
[] TBrowser b

Click on the folder in the left-hand pane with the same name as your home directory. Double-
click on experiment.root. There's just one object inside: tree1, a ROOT TTree (or n-tuple)
with 100,000 simulated physics events.

There's%no%real%physics%associated%with%the%contents%of%this%n/tuple.%I%created%it%to%

illustrate%ROOT%concepts,%not%to%demonstrate%physics%with%a%real%detector.%

Right-click on the tree1 icon, and select Scan. You'll be presented with a dialog box; just hit OK
for now. Select your ROOT window, even though the dialog box didn't go away. At first you'll
notice that it's a lot of numbers. Take a look at near the top of the screen; you should see the
names of the variables in this ROOT Tree.

In%this%simple%example,%a%particle%is%traveling%in%a%positive%direction%along%the%z/axis%with%

energy%ebeam.%It%hits%a%target%at%z=0,%and%travels%a%distance%zv%before%it%is%deflected%by%
the%material%of%the%target.%The%particle’s%new%trajectory%is%represented%by%px,%py,%and%
pz,%the%final%momenta%in%the%x/,%y/,%and%z/directions%respectively.%The%variable%chi2%(χ2)%
represents%a%confidence%level%in%the%measurement%of%the%particle’s%momentum%after%

deflection.%

Figure 5: Sketch of the experiment and variables.

Did%you%notice%what's%missing%from%the%above%description?%Answer:%units.%I%didn't%tell%

you%whether%zv%is%in%millimeters,%centimeters,%inches,%yards,%etc.%Such%information%is%not%

usually%stored%inside%an%n/tuple;%you%have%to%find%out%what%it%is%and%include%the%units%in%

the%labels%of%the%plots%you%create.
19
%For%this%example,%assume%that%zv%is%in%centimeters%

(cm),%and%all%energies%and%momenta%are%in%GeV.%

You can hit Enter to see more numbers, but you probably won't learn much. Hit q to finish the
scan. You may have to hit Enter a couple of times to see the ROOT prompt again.

19 Advanced note: There is a way of storing comments about the contents of a ROOT tree, which can include

information such as units. However, you can't do this with n-tuples; you have to create a C++ class that contains
your information in the form of comments, and use a ROOT “dictionary” to include the additional information.
This is outside the scope of what you'll be asked to do this summer. If you're interested in the concept, it's
described in Chapter 15 of the ROOT User's Guide. There’s an example in Part Five of this class.

ebeam

(px,py,pz)

zv

Page 26 of 82 Basic Data Analysis Using ROOT 5/23/14

Decision: ROOT/C++ or pyroot?
Up%until%this%point,%the%commands%for%ROOT%and%pyroot%were%identical.%I%presented%them%

in%the%context%of%using%ROOT’s%C++%environment,%CINT.%%

From%this%point%forward,%using%ROOT/C++%is%different%from%using%python%with%ROOT%

extensions.%You%have%to%decide:%which%path%do%you%want%to%take%learning%ROOT?%My%

initial%advice%is%to%ask%your%supervisor.%Their%response,%in%ascending%order%of%likelihood,%

will%be:%

• a%clear%decision%(C++%or%pyroot);%

• “I%don’t%know.%Which%do%you%feel%like%learning?”%

• “I%have%no%idea%what%you’re%talking%about.”%

If%it’s%up%to%you,%here%are%facts%to%help%you%decide:
20
%

In%favor%of%pyroot:%

• Learning%pyroot%is%easier%and%faster%than%learning%C++.%

• Pyroot%can%be%more%appropriate%for%“quick/and/dirty”%analysis%efforts,%if%that’s%

the%kind%of%work%you’ll%be%doing%this%summer.%%

In%favor%of%C++:%

• All%of%the%ROOT%documentation,%Parts%Four%and%Five%of%this%tutorial,%and%most%of%

the%tutorials%included%with%ROOT%(see%page%65)%are%in%C++.%

• If%you’re%going%to%be%working%with%your%experiment’s%analysis%framework,%it%will%

almost%certainly%involve%working%in%C++.%%

• C++%code,%when%compiled,%is%faster%than%python%(see%page%45).%%

Parts%Two%and%Three%of%this%tutorial%present%the%same%commands,%exercises,%and%

footnotes.
21
%Pick%which%language%you%want%to%learn%and%go%there;%Part%Two%(ROOT/C++)%

starts%on%the%next%page%and%Part%Three%(pyroot)%starts%on%page%46.%%

You%might%even%be%able%to%do%both%Parts%Two%and%Three;%once%you’ve%mastered%C++,%

python%is%pretty%easy!%

20 Here’s where neither has a clear advantage: Both C++ and python are used worldwide, so knowing either one

can be useful. Python’s interactive development is usually cited as an advantage over C++, but ROOT offers the
interactive C++ interpreter, CINT. Both languages have substantive numerical computing libraries (such as
SciPy and NumPy in python, GSL in C++). For raw numeric power, FORTRAN is still the best, but it’s no
longer the main computer language in particle physics.

21 The xkcd cartoons in the two parts are different, to give you an incentive to skim both sections.

5/23/14 Basic Data Analysis Using ROOT Page 27 of 82

Part Two – The C++ path

Walkthrough: Simple analysis using the Draw command (10
minutes)

It%may%be%that%all%the%analysis%tasks%that%your%supervisor%will%ask%you%to%do%can%be%

performed%using%the%Draw%command,%the%TreeViewer%(see%page%64),%the%FitPanel%and%

other%simple%techniques%discussed%in%the%ROOT%Users%Guide.%

However,%it’s%more%likely%that%these%simple%commands%will%only%be%useful%when%you%get%

started;%for%example,%you%can%draw%a%histogram%of%just%one%variable%to%see%what%the%

histogram%limits%might%be%in%C++.%Let’s%start%with%the%simple%tricks,%then%move%to%more%

realistic%techniques.%

If you don't already have the sample ROOT TTree file open, open it with the following
command:

[] TFile myFile("experiment.root")

You can use the Scan command to look at the contents of the Tree, instead of using the
TBrowser as described on the previous page:

[] tree1->Scan()

If%you%take%a%moment%to%think%about%it%(a%habit%I%strongly%encourage),%you%may%ask%how%

ROOT%knows%that%there's%a%variable%named%tree1,%when%you%didn't%type%a%command%to%

create%it.%

The%answer%is%that%when%you%read%a%file%containing%ROOT%objects%(see%“Saving%your%work,%

part%2”%on%page%24)%in%an%interactive%ROOT%session,%ROOT%automatically%looks%at%the%

objects%in%the%file%and%creates%variables%with%the%same%name%as%the%objects.%

This%is%not%standard%behavior%in%C++;%it%isn’t%even%standard%behavior%when%you’re%
working%with%ROOT%macros.%Don't%become%too%used%to%it!%

You can also display the TTree in a different way that doesn't show the data, but displays the
names of the variables and the size of the TTree:

[] tree1->Print()

Either way, you can see that the variables stored in the TTree are event, ebeam, px, py, pz,
zv, and chi2.
Create a histogram of one of the variables. For example:

[] tree1->Draw("ebeam")

Using the Draw command, make histograms of the other variables.
By%the%way,%the%variable%event%is%just%the%event%number%(it's%0%for%the%first%event,%1%for%

the%second%event,%2%for%the%third%event...%99999%for%the%100,000th%event).%%

%

Page 28 of 82 Basic Data Analysis Using ROOT 5/23/14

Pointers: A too-short explanation (for those who don't know
C++ or C) (5 minutes)

On%the%previous%page%we%used%the%pointer%symbol%"/>"%(a%dash%followed%by%a%greater/

than%sign)%instead%of%the%period%"."%to%issue%the%commands%to%the%TTree.%This%is%because%

the%variable%tree1%isn’t%really%the%TTree%itself;%it’s%a%‘pointer’%to%the%TTree.%%

The%detailed%difference%between%an%object%and%a%pointer%in%C++%(and%ROOT)%is%beyond%

the%scope%of%this%tutorial.%I%strongly%suggest%that%you%look%this%up%in%any%introductory%text%

on%C++.%For%now,%I%hope%it’s%enough%to%show%a%couple%of%examples:%

[] TH1D hist1("h1","a histogram",100,-3,3)

This%creates%a%new%histogram%in%ROOT,%and%the%name%of%the%“histogram%object”%is%

hist1.%I%must%use%a%period%to%issue%commands%to%the%histogram:%

[] hist1.Draw()

Here’s%the%same%thing,%but%using%a%pointer%instead:%

[] TH1D *hist1 = new TH1D("h1","a histogram",100,-3,3)

Note%the%use%of%the%asterisk%“*”%when%I%define%the%variable,%and%the%use%of%the%C++%

keyword%“new”.%

In%this%example,%hist1%is%not%a%‘histogram%object,’%it’s%a%‘histogram%pointer.’%I%must%use%

the%pointer%symbols%to%issue%commands:%

[] hist1->Draw()

Take%another%look%at%the%file%c1.C%that%you%created%in%a%previous%example.%Note%that%

ROOT%uses%pointers%for%almost%all%the%code%it%creates.%As%I%mentioned%above,%ROOT%

automatically%creates%variables%when%it%opens%files%in%interactive%mode;%these%variables%

are%always%pointers.%%

It’s%a%little%harder%to%think%in%terms%of%pointers%than%in%terms%of%objects.%However,%you%

have%to%use%pointers%if%you%want%to%use%the%C++%code%that%ROOT%generates%for%you%%

You%also%have%to%use%pointers%to%take%advantage%of%object%inheritance%and%polymorphism%

in%C++.%ROOT%relies%heavily%on%object%inheritance%(some%would%say%too%heavily);%we’ll%get%

more%into%inheritance%in%Part%Four%of%this%tutorial.%

Figure 6: http://xkcd.com/138 by Randall Munroe

Alt-text: “Every computer, at the unreachable address of 0x-1, stores a secret. I have found it,
and it is that all humans ar--- SEGMENTATION FAULT”

5/23/14 Basic Data Analysis Using ROOT Page 29 of 82

Walkthrough: Simple analysis using the Draw command, part 2
(10 minutes)
Instead of just plotting a single variable, let’s try plotting two variables at once:

[] tree1->Draw("ebeam:px")

This%is%a%scatterplot,%a%handy%way%of%observing%the%correlations%between%two%variables.%

The%Draw%command%interprets%the%variables%as%("y:x")%to%decide%which%axes%to%use.%

It's%easy%to%fall%into%the%trap%of%thinking%that%each%(x,y)%point%on%a%scatterplot%represents%

two%values%in%your%n/tuple.%The%scatterplot%is%a%grid;%each%square%in%the%grid%is%randomly%

populated%with%a%density%of%dots%proportional%to%the%number%of%values%in%that%square.%

Try making scatterplots of different pairs of variables. Do you see any correlations?
If%you%see%a%shapeless%blob%on%the%scatterplot,%the%variables%are%likely%to%be%uncorrelated;%

for%example,%plot%px%versus%py.%If%you%see%a%pattern,%there%may%be%a%correlation;%for%

example,%plot%pz%versus%zv.%It%appears%that%the%higher%pz%is,%the%lower%zv%is,%and%vice%
versa.%Perhaps%the%particle%loses%energy%before%it%is%deflected%in%the%target.%

Let's create a “cut” (a limit on the range of a variable):
[] tree1->Draw("zv","zv<20")

Look at the x-axis of the histogram. Compare this with:
[] tree1->Draw("zv")

Note%that%ROOT%determines%an%appropriate%range%for%the%x/axis%of%your%histogram.%Enjoy%

this%while%you%can;%this%feature%is%lost%when%you%start%using%analysis%macros.
22
%

A variable in a cut does not have to be one of the variables you're plotting:
[] tree1->Draw("ebeam","zv<20")

Try this with some of the other variables in the tree.
The symbol for logical AND in C++ is "&&". Try using this in a cut,23 e.g.:

[] tree1->Draw("ebeam","px>10 && zv<20")

22 Another advanced note: If you know what you’re doing, you can use the same trick that ROOT uses when it

creates the histogram you create with commands like tree1->Draw("zv"). The trick is:
TH1* hist = new TH1D(...); // define your histogram
hist->SetBit(TH1::kCanRebin); // allow the histogram to re-bin itself
hist->Sumw2(); // so the error bars are correct after re-binning

 “Re-binning” means that if a value is supplied to the histogram that's outside its limits, it will adjust those limits
automatically. It does this by summing existing bins then doubling the bin width; the bin limits change, while the
number of histogram bins remains constant.

23 For those who know what a “weighted histogram” means: A “cut” is actually a weight ROOT applies when
filling a histogram; a logical expression has the value 1 if true and the value 0 if false. If you want to fill a
histogram with weighted values, use an expression for the cut that corresponds to the weight.

 For example: a cut of "1/e" will fill a histogram with each event weighted by 1/e; a cut of "(1/e)*(sqrt(z)>3.2)"
will fill a histogram with events weighted by 1/e, for those events with sqrt(z) greater than 3.2.

Page 30 of 82 Basic Data Analysis Using ROOT 5/23/14

Walkthrough: Using C++ to analyze a Tree (10 minutes)
You%can%spend%a%lifetime%learning%all%the%in/and/outs%of%object/oriented%programming%in%

C++.
24
%Fortunately,%you%only%need%a%small%subset%of%this%to%perform%analysis%tasks%with%

ROOT.%The%first%step%is%to%have%ROOT%write%the%skeleton%of%an%analysis%class%for%your%

n/tuple.%This%is%done%with%the%MakeClass%command.%%

Let's start with a clean slate: quit ROOT if it’s running and start it up again. Open the ROOT tree
again:

[] TFile myFile("experiment.root")

Now create an analysis macro for tree1 with MakeClass. I'm going to use the name “Analyze”
for this macro, but you can use any name you want; just remember to use your name instead of
“Analyze” in all the examples below.25

[] tree1->MakeClass("Analyze")

Switch to the UNIX window and examine the files that were created:
> less Analyze.h
> less Analyze.C

Remember%this%from%my%introductory%talk?%Unless%you're%familiar%with%C++,%this%

probably%looks%like%gobbledy/gook%to%you.%(I%know%C++,%and%it%looked%like%gobbledy/gook%

to%me…%at%first.)%%We%can%simplify%this%by%understanding%the%approach%of%most%analysis%

tasks:%

• Set6up%/%open%files,%define%variables,%create%histograms,%etc.%

• Loop%/%for%each%event%in%the%n/tuple%or%Tree,%perform%some%tasks:%calculate%

values,%apply%cuts,%fill%histograms,%etc.%

• Wrap6up%/%display%results,%save%histograms,%etc.%

(continued on the next page)

24 That's four lifetimes. And you thought you only signed up for a ten-week project! Gosh, I wonder if it takes a

lifetime to understand high-energy physics.
25 If you use a different name than “Analyze” be aware that if you copy files such as AnalyzeComments.C from my

area, you’ll want to use the global search-and-replace in your editor to change “Analyze” to your new name.

5/23/14 Basic Data Analysis Using ROOT Page 31 of 82

Walkthrough: Using C++ to analyze a Tree (continued)
The C++ code from Analyze.C is on the next page. I've marked the places in the code where
you'd place your own commands for Set-up, Loop, and Wrap-up. Compare the code you see in
Analyze.C with what I've put on the next page.

You’ve%probably%already%guessed%that%lines%beginning%with%“//”%are%comments.%Your%next%

observation%may%be%that%the%comments%put%there%by%ROOT%aren’t%helpful%to%you.%These%

are%the%comments%that%ROOT%automatically%generates%with%the%MakeClass%command;%

you%can%edit%or%delete%them%after%they're%created,%but%you%can’t%easily%prevent%them%

from%being%created%in%the%first%place.%

Note%that%Loop%and%Wrap/up%are%separated%by%a%single%right%curly%bracket%“}”.%Make%sure%

your%commands%go%in%the%right%place!%Also,%be%careful%not%to%accidentally%delete%the%final%

“}”%in%the%file%when%you%edit%your%Wrap/up%commands.%

Finally,%I'm%sure%you've%noticed%the%comments%I%put%in%the%code%are%in%a%different%font%on%

the%next%page.%That's%where%you're%going%to%put%your%own%analysis%code.%You%can%edit%

Analyze.C%and%put%those%comments%in%there%to%act%as%placeholders%for%your%code;%I%

suggest%you%give%the%file%a%different%name%as%you%edit%it,%such%as%“AnalyzeComments.C”.%

I’ve%already%done%this%for%you,%and%you%can%copy%this%code%if%you%wish:%

> cp ~seligman/root-class/AnalyzeComments.C $PWD

Page 32 of 82 Basic Data Analysis Using ROOT 5/23/14

#define Analyze_cxx
#include "Analyze.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>

void Analyze::Loop()
{
// In a ROOT session, you can do:
// Root > .L Analyze.C
// Root > Analyze t
// Root > t.GetEntry(12); // Fill t data members with entry number 12
// Root > t.Show(); // Show values of entry 12
// Root > t.Show(16); // Read and show values of entry 16
// Root > t.Loop(); // Loop on all entries
//

// This is the loop skeleton where:
// jentry is the global entry number in the chain
// ientry is the entry number in the current Tree
// Note that the argument to GetEntry must be:
// jentry for TChain::GetEntry
// ientry for TTree::GetEntry and TBranch::GetEntry
//
// To read only selected branches, Insert statements like:
// METHOD1:
// fChain->SetBranchStatus("*",0); // disable all branches
// fChain->SetBranchStatus("branchname",1); // activate branchname
// METHOD2: replace line
// fChain->GetEntry(jentry); //read all branches
//by b_branchname->GetEntry(ientry); //read only this branch
 if (fChain == 0) return;

%%%//%The%Set/up%code%goes%here.%

 Long64_t nentries = fChain->GetEntriesFast();

 Long64_t nbytes = 0, nb = 0;
 for (Long64_t jentry=0; jentry<nentries;jentry++) {
 Long64_t ientry = LoadTree(jentry);
 if (ientry < 0) break;
 nb = fChain->GetEntry(jentry); nbytes += nb;
 // if (Cut(ientry) < 0) continue;

//%The%Loop%code%goes%here.%

 }

//%The%Wrap/up%code%goes%here.%

}
Figure 7: Example C++ macro (AnalyzeComments.C). Compare with the code in pyroot (Figure 11, page 53).

5/23/14 Basic Data Analysis Using ROOT Page 33 of 82

Walkthrough: Running the Analyze macro (10 minutes)
As it stands, the Analyze macro does nothing, but let’s learn how to run it anyway. Quit ROOT,
start it again, and enter the following lines:

[] .L AnalyzeComments.C
[] Analyze a
[] a.Loop()

Tab%completion%(see%page%9)%is%useful%here.%

After the last command, ROOT will pause as it reads through all the events in the Tree. Since we
haven’t included any analysis code yet, you won’t see anything else happen.

If%you’re%not%familiar%with%C++,%you%may%be%very%confused%at%this%point.%What%do%any%of%

the%above%commands%have%to%do%with%the%file%“experiment.root”%or%the%TTree%inside%it?%

And%what%do%these%commands%mean?%

Take%another%look%at%Analyze.h.%If%you%scan%through%it,%you’ll%see%C++%commands%that%

explicitly%refer%to%the%name%of%the%file,%the%name%of%the%Tree,%and%its%variables.%Now%go%

back%and%look%at%the%top%of%AnalyzeComments.C.%You'll%see%the%line%%

#include Analyze.h

This%means%that%ROOT%will%include%the%contents%of%the%file%Analyze.h%when%it%loads%

AnalyzeComments.C.%

Let’s%examine%each%of%those%three%commands:%

• .L AnalyzeComments.C%/%tells%ROOT%to%load%the%computer%code%inside%the%

file%AnalyzeComments.C,%and%to%interpret%the%code%to%create%a%C++%class.%The%

name%of%this%class%will%be%Analyze;%look%near%the%top%of%Analyze.h,%and%you'll%
see%the%C++%keywords%class Analyze.%

• Analyze a%/%creates%an%object%whose%name%is%a%(I’ll%explain%this%on%the%next%
page).%

• a.Loop()%/%tells%ROOT%to%execute%the%Loop%command%of%object%a.%Look%at%
AnalyzeComments.C%again.%Near%the%beginning,%you'll%see%the%line%void
Analyze::Loop.%The%code%in%this%file,%and%therefore%the%code%that%you’ll%be%
working%with%for%most%of%the%rest%of%Part%Two,%defines%the%Loop%command.%

%

Page 34 of 82 Basic Data Analysis Using ROOT 5/23/14

Classes and objects: A too-brief explanation (for those who
don't know C++) (10 minutes)

So%what%is%a%class%and%what%is%an%object?%The%way%I%usually%think%of%it%is%that%a%class%

defines%an%abstract%view%of%a%concept,%but%an%object%is%a%concrete%thing.%
Here's%an%analogy.%Suppose%I%define%the%concept%of%a%circle.%What%are%the%properties%of%a%

circle?%Well,%it%has%a%radius,%and%the%location%of%its%center.%Since%we’re%talking%about%

computers,%we%might%think%of%giving%the%circle%some%commands%to%obey:%tell%me%your%

circumference;%tell%me%your%area.%The%commands%(C++%code)%are%instructions%on%what%do%

with%the%properties%of%the%circle%(e.g.,%A=4πr2).%
If%I%ask%you%“Where%is%the%center%of%a%circle?”%you’d%have%trouble%answering%the%question%

numerically%before%I’ve%given%you%anything%concrete.%I’ve%defined%the%concepts%and%

properties%of%a%circle,%but%I%haven’t%drawn%an%actual%circle%to%work%with.%To%put%it%in%C++%

terms,%I've%created%a%circle%class,%but%not%a%circle%object.%
Suppose%I%draw%an%actual%circle.%Here%it%is:%%

%

%

%

Now%you%can%tell%me%the%center%of%the%drawn%circle%in%some%co/ordinate%system;%for%

example,%you%could%take%a%ruler%and%measure%the%center%from%the%edge%of%the%page.%The%

object%has%the%hard%numbers%that%allow%the%circle’s%commands%to%calculate%numerical%

values%for%the%circumference,%area,%and%so%on.%

To%put%it%another%way:%the%class%represents%the%rules%for%accessing%the%information;%the%

object%holds%the%specific%information.%

Assume%that%I%write%C++%code%to%define%a%circle%class.%I’m%going%to%put%this%code%in%a%file%

whose%name%is%CircleClass.C.%I’m%going%to%give%the%class%a%name:%Circle.%That%class%is%going%

to%contain%a%command:%Area.%

These%are%the%ROOT%commands%that%might%be%used%to%find%the%area%of%c,%a%particular%

circle:
26
%

[] .L CircleClass.C
[] Circle c
[] c.Area()

(continued on next page)

26 These are examples. Don’t bother to type them into ROOT; there’s no such file or class.

5/23/14 Basic Data Analysis Using ROOT Page 35 of 82

Classes and objects: (too briefly continued)
There’s%something%I’ve%avoided%so%far:%I%didn’t%discuss%how%I%might%tell%ROOT%the%radius%

or%the%actual%(x,y)%co/ordinates%of%the%center%of%the%circle;%in%C++%terms,%I%haven't%

discussed%passing%values%to%the%class%constructor.%The%reason%why%I’ve%skipped%over%this%

is%that%it’s%not%relevant%to%the%Analyze%example:%the%name%of%the%ROOT%file,%TTree,%and%

variables%are%specified%explicitly%in%Analyze.h.%

However,%you%have%passed%values%to%a%constructor%before;%you%did%it%when%you%typed%

this:%

TH1D myHist(“hist”,”example histogram”,100,-3.,3.);

This%creates%an%object%myHist%of%class%TH1D.%After%you%did%that,%you%could%send%
commands%to%myHist;%e.g.,%

myHist.Draw();

You%didn’t%have%to%type%in%something%like%“.L%TH1D.C”%because%that%class%is%built%into%

ROOT.%“Analyze”%is%not%built/in,%so%we%have%to%tell%ROOT%to%load%it.%
To%do%our%analysis,%we%need%a%file%for%our%C++%code.%The%file%will%define%a%class%to%perform%

the%analysis.%We%need%to%create%a%concrete%object%of%the%class,%and%we%need%to%send%that%

object%the%Loop%command.%

From%a%practical%standpoint,%this%means%that%every%time%you%edit%the%file%

AnalyzeComments.C,%you%must%re/load%it%into%ROOT,%you%must%create%a%brand/new%

object,%and%you%must%execute%the%Loop%command%again.%

Take%another%look%at%the%three%commands%at%the%top%of%page%33.%Get%used%to%them.%

You'll%be%typing%them%(or%variants%of%them)%over%and%over%again%as%you%do%your%analysis.%

Remember,%the%up/arrow%key%is%your%friend!%

%

Figure 8: http://xkcd.com/601 by Randall Munroe.

Alt-text: “Wait, no, that one also loses. How about a nice game of chess?”
If you chose to type Analyze Love as the second of the three commands, what would the next line be?

Page 36 of 82 Basic Data Analysis Using ROOT 5/23/14

Walkthrough: Making a histogram with Analyze (15 minutes)
Make a copy of the Analyze.C or AnalyzeComments.C file:

> cp AnalyzeComments.C AnalyzeHistogram.C

Edit the file AnalyzeHistogram.C. In the Set-up section, insert the following code:
 TH1* chi2Hist = new TH1D("chi2","Histogram of Chi2",100,0,20);

In the Loop section, put this in:
 chi2Hist->Fill(chi2);

This goes in the Wrap-up section:
 chi2Hist->Draw();

Don’t%forget%the%semi/colons%“;”%at%the%ends%of%the%lines!%You%can%omit%them%in%

interactive%commands,%but%not%in%macros.%

Save the file, then enter the following commands in ROOT:
[] .L AnalyzeHistogram.C
[] Analyze a
[] a.Loop()

Finally,%we’ve%made%our%first%histogram%with%a%C++%analysis%macro.%In%the%Set/up%section,%

we%defined%a%histogram;%in%the%Loop%section,%we%filled%the%histogram%with%values;%in%the%

Wrap/up%section,%we%drew%the%histogram.%

“What%histogram?%I%don’t%see%anything!”%Don’t%forget:%if%you%have%the%TBrowser%open,%

you%may%need%to%click%on%the%Canvas%1%tab.%%
How%did%I%know%which%bin%limits%to%use%on%chi2Hist?%Before%I%wrote%the%code,%I%drew%a%
test%histogram%with%the%command:%

[] tree1->Draw("chi2")

Hmm,%the%histogram’s%axes%aren’t%labeled.%How%do%I%put%the%labels%in%the%macro?%Here’s%

how%I%figured%it%out:%I%labeled%the%axes%on%the%test%histogram%by%right/clicking%on%them%

and%selecting%SetTitle.%I%saved%the%canvas%by%selecting%Save6>c1.C%from%the%File%menu.%I%

looked%at%c1.C%and%saw%these%commands%in%the%file:%

 chi2->GetXaxis()->SetTitle("chi2");
 chi2->GetYaxis()->SetTitle("number of events");

I%scrolled%up%and%saw%that%ROOT%had%used%the%variable%chi2%for%the%name%of%the%

histogram%pointer.%I%copied%the%lines%into%AnalyzeHistogram.C,%but%used%the%name%of%my%

histogram%instead:%

 chi2Hist->GetXaxis()->SetTitle("chi2");
 chi2Hist->GetYaxis()->SetTitle("number of events");

Try this yourself: add the two lines above to the Set-up section, right after the line that defines
the histogram. Test the revised Analyze class.

The%labels%overlap%the%axis%numbers.%This%is%good%enough%for%now,%but%you’ll%have%to%

figure%out%how%to%move%the%labels%if%you%were%ever%to%publish%this%plot.%You’ll%deal%with%

this%issue%in%Exercise%11.%

5/23/14 Basic Data Analysis Using ROOT Page 37 of 82

Exercise 2: Adding error bars to a histogram (5 minutes)
We're still plotting the chi2 histogram as a solid curve. Most of the time, your supervisor will
want to see histograms with errors. Revise the Analyze::Loop method in
AnalyzeHistogram.C to draw the histograms with error bars.

Hint:%Look%back%at%“Working%with%Histograms”%on%page%17.%

Warning:%The%histogram%may%not%be%immediately%visible,%because%all%the%points%are%

squeezed%into%the%left/hand%side%of%the%plot.%We'll%investigate%the%reason%why%in%a%

subsequent%exercise.%

Exercise 3: Two histograms in the same loop (15 minutes)
Revise AnalyzeHistogram.C to create, fill, and display an additional histogram of the variable
ebeam (with error bars and axis labels, of course).

First,%some%hints%for%those%new%to%C++:%

Take%care!%On%page%30%I%broke%up%a%typical%physics%analysis%task%into%three%pieces:%the%

Set/up,%the%Loop,%and%the%Wrap/up;%I%also%marked%the%locations%in%the%macro%where%

you'd%put%these%steps.%

What%may%not%be%obvious%is%that%all%your%commands%that%relate%to%setting%things%up%

must%go%in%the%Set/up%section,%all%your%commands%that%are%repeated%for%each%event%must%

go%in%the%Loop%section,%and%so%on.%Don't%try%to%create%two%histograms%by%copying%the%

entire%Analyze::Loop%program%and%pasting%it%more%than%once;%it%won't%work.%

Now,%some%warnings%for%everyone:%

Prediction:%You’re%going%to%run%into%trouble%when%you%get%to%the%Wrap/up%section%and%

draw%the%histograms.%When%you%run%your%code,%you’ll%probably%only%see%one%histogram%

plotted,%and%it%will%be%the%last%one%you%plot.%

The%problem%is%that%when%you%issue%the%Draw%command%for%a%histogram,%by%default%it’s%

drawn%on%the%“current”%canvas.%If%there%is%no%canvas,%a%default%one%(our%old%friend%c1)%is%
created.%So%both%histograms%are%being%drawn%to%the%same%canvas.%

You%can%solve%the%problem%in%one%of%two%ways:%you%can%create%a%new%canvas%for%each%

histogram,%or%you%can%create%one%large%canvas%and%divide%it%into%sub/pads%(see%the%lesson%

"Working%with%multiple%plots"%on%page%18).%I’ll%let%you%pick%which%to%use,%but%be%

forewarned:%working%with%pads%is%more%ambitious%than%creating%one%canvas%for%each%

plot.%

More%clues:%Look%at%c1.C%to%see%an%example%of%how%a%canvas%is%created.%Look%up%the%

TCanvas%class%on%the%ROOT%web%site%to%figure%out%what%the%commands%do.%To%figure%

out%how%to%switch%between%canvases,%look%at%TCanvas::cd()%(that%is,%the%cd()%
method%of%the%TCanvas%class).%

Is%the%ebeam%histogram%empty?%Take%at%look%at%the%lower%and%upper%limit%of%your%

histogram.%What%is%the%range%of%ebeam%in%the%n/tuple?%

Page 38 of 82 Basic Data Analysis Using ROOT 5/23/14

Exercise 4: Displaying fit parameters (10 minutes)
Fit the ebeam histogram to a gaussian distribution.

OK,%that%part%was%easy.%It%was%particularly%easy%because%the%“gaus”%function%is%built%into%

ROOT,%so%you%don’t%have%to%worry%about%a%user/defined%function.%%

Let’s make it a bit harder: the parameters from the fit are displayed in the ROOT text window;
your task is to put them on the histogram as well. You want to see the parameter names, the
values of the parameters, and the errors on the parameters as part of the plot.

This%is%trickier,%because%you%have%to%hunt%for%the%answer%on%the%ROOT%web%site...%and%

when%you%see%the%answer,%you%may%be%tempted%to%change%it%instead%of%typing%in%exactly%

what's%on%the%web%site.%%

Take%a%look%at%the%description%of%the%TH1::Draw()%method.%In%that%description,%it%says%

“See%THistPainter::Paint%for%a%description%of%all%the%drawing%options.”%Click%on%the%word%

THistPainter.%There's%lots%of%interesting%stuff%here,%but%for%now%focus%on%the%section%
“Statistics%Display.”%(By%the%way,%now%you%know%how%I%figured%out%the%“surf1”%option%for%

Exercise%1%on%page%15).%

There%was%another%way%to%figure%this%out,%and%maybe%you%tried%it:%Draw%a%histogram,%

select%Options6>Fit%Parameters,%fit%a%function%to%the%histogram,%save%it%as%c1.C,%and%look%

at%the%file.%OK,%the%command%is%there...%but%would%you%have%been%able%to%guess%which%

one%it%was%if%you%hadn't%looked%it%up%on%the%web%site?%

Exercise 5: Scatterplot (10 minutes)
Now add another plot: a scatterplot of chi2 versus ebeam. Don’t forget to label the axes! 27

Hint:%Remember%back%in%Exercise%1,%I%asked%you%to%figure%out%the%name%TF2%given%that%
the%name%of%the%1/dimensional%function%class%was%TF1?%Well,%the%name%of%the%one/

dimensional%histogram%class%is%TH1D,%so%what%do%you%think%the%name%of%the%two/

dimensional%histogram%class%is?%Check%your%guess%on%the%ROOT%web%site.%

27 A tangent I can indulge in, now that you know about filling histograms: Suppose you're told to fill two

histograms, then add them together. If you do this, you'll want to call the "Sumw2" method of both histograms
before you fill them; e.g.,

 TH1* hist1 = new TH1D(…);
 TH1* hist2 = new TH1D(…);
 hist1->Sumw2();
 hist2->Sumw2();
 // Fill your histograms
 hist1->Fill(...); hist2->Fill(...);
 // Add hist2 to the contents of hist1:
 hist1->Add(hist2);

 If you forget Sumw2, then your error bars after the math operation won't be correct. General rule: If you're going
to perform histogram arithmetic, use Sumw2 (which means "sum the squares of the weights"). Some physicists
use Sumw2 all the time, just in case.

5/23/14 Basic Data Analysis Using ROOT Page 39 of 82

Walkthrough: Calculating our own variables (10 minutes)
There%are%other%quantities%that%we%may%be%interested%in%apart%from%the%ones%already%

present%in%the%n/tuple.%One%such%quantity%is

�

pTwhich%is%defined%by:%

�

pT = px
2 + py

2

This%is%the%transverse%momentum%of%the%particle,%that%is,%the%component%of%the%particle's%

momentum%that's%perpendicular%to%the%z/axis.%

Let's calculate our own values in an analysis macro. Start fresh by copying our
AnalyzeComments example again:

> cp AnalyzeComments.C AnalyzeVariables.C

In the Loop section, put in the following line:
 Double_t pt = TMath::Sqrt(px*px + py*py);

What%does%this%mean?%

Whenever%you%create%a%new%variable%in%C++,%you%must%say%what%type%of%thing%it%is.%We've%

already%done%this%in%statements%like%

TF1 func("user","gaus(0)+gaus(3)")

This%statement%creates%a%brand/new%variable%named%func,%with%a%type%of%TF1.%%In%the%
Loop%section%of%AnalyzeVariables,%we're%creating%a%new%variable%named%pt,%and%
its%type%is%Double_t.%%

For%the%purpose%of%the%analyses%that%you’re%likely%to%do,%there%are%only%a%few%types%of%

numeric%variables%that%you’ll%have%to%know:%%

• Float_t%is%used%for%real%numbers.%%

• Double_t%is%used%for%double/precision%real%numbers.%%

• Int_t%is%used%for%integers.%%

• Bool_t%is%for%boolean%(true/false)%values.%%

• Long64_t%specifies%64/bit%integers,%which%you%probably%won't%need%for%your%
work.%%

Most%physicists%use%double%precision%for%their%numeric%calculations,%just%in%case.%

If%you%already%know%C++:%the%reason%why%we%don't%just%use%the%built/in%types%float,%
double,%int,%and%bool%is%discussed%on%pages%18/19%of%the%ROOT%Users%Guide.%

ROOT%comes%with%a%very%complete%set%of%math%functions.%You%can%browse%them%all%by%

looking%at%the%TMath%class%on%the%ROOT%web%site,%or%Chapter%13%in%the%ROOT%User’s%
Guide.%For%now,%it’s%enough%to%know%that%TMath::Sqrt()%computes%the%square%root%

of%the%expression%within%the%parenthesis%“()”.%

Test the macro in AnalyzeVariables to make sure it runs. You won’t see any output, so we’ll fix
that in the next exercise.

Page 40 of 82 Basic Data Analysis Using ROOT 5/23/14

Exercise 6: Plotting a derived variable (10 minutes)
Revise AnalyzeVariables.C to make a histogram of the variable pt. Don’t forget to label the
axes; remember that the momenta are in GeV.

If%you%want%to%figure%out%what%the%bin%limits%of%the%histogram%should%be,%I’ll%permit%you%

to%“cheat”%and%use%the%following%command%interactively:%

tree1->Draw("sqrt(px*px + py*py)")

Exercise 7: Trig functions (15 minutes)
The quantity theta, or the angle that the beam makes with the z-axis, is calculated by:

�

θ = arctan pT
pz

⎛

⎝
⎜

⎞

⎠
⎟

The units are radians. Revise AnalyzeVariables.C to include a histogram of theta.

I’ll%make%your%life%a%little%easier:%the%math%function%you%want%is%TMath::ATan2(y,x),%
which%computes%the%arctangent%of%y/x.%It’s%better%to%use%this%function%than%

TMath::ATan(y/x),%because%the%ATan2%function%correctly%handles%the%case%when%
x=0.%
%

Figure 9: http://xkcd.com/809 by Randall Munroe

5/23/14 Basic Data Analysis Using ROOT Page 41 of 82

Walkthrough: Applying a cut (10 minutes)
The%last%“trick”%you%need%to%learn%is%how%to%apply%a%cut%in%an%analysis%macro.%Once%you've%

absorbed%this,%you'll%know%enough%about%ROOT%to%start%using%it%for%a%real%physics%

analysis.%

The%simplest%way%to%apply%a%cut%in%C++%is%to%use%the%if%statement.%This%is%described%in%

every%introductory%C%and%C++%text,%and%I%won’t%go%into%detail%here.%Instead%I'll%provide%an%

example%to%get%you%started.%

Once again, let's start with a fresh Analyze macro:
> cp AnalyzeComments.C AnalyzeCuts.C

Our goal is to count the number of events for which pz is less than 145 GeV. Since we're going
to count the events, we're going to need a counter. Put the following in the Set-up section of
AnalyzeCuts.C:
 Int_t pzCount = 0;

Why%Int_t%and%not%Long64_t?%I%find%that%Int_t%is%easier%to%remember.%I%could%even%

“cheat”%and%just%use%int,%which%will%work%for%this%example.%You%would%only%have%to%use%

the%type%Long64_t%if%you%were%counting%more%than%2
31
%entries.%I%promise%you%that%

there%aren’t%that%many%entries%in%this%file!
28
%

For every event that passes the cut, we want to add one to the count. Put the following in the
Loop section:
 if (pz < 145)
 {
 pzCount = pzCount + 1; // you could use "pzCount++;" instead
 }

Be%careful:%it's%important%that%you%surround%the%logical%expression%pz < 145%with%
parentheses%"()",%but%the%"if/clause"%must%use%curly%brackets%"{}".%

Now we have to display the value. Again, I'm going to defer a complete description of
formatting text output to a C++ textbook, and simply supply the following statement for your
Wrap-up section:
 std::cout << "The number of events with pz < 145 is "
 << pzCount << std::endl;

When%I%run%this%macro,%I%get%the%following%output:%

 The number of events with pz < 145 is 14962

Hopefully%you'll%get%the%same%answer.%

28 Recall that in the lecture I gave at the start of the class, I mentioned that other commonly used data-analysis

programs couldn’t handle a large number of events. Can you picture an Excel spreadsheet with more than 231
rows? ROOT can handle datasets with up to 263 entries!

 Having trouble visualizing powers of 2? Remember that 210 ≈ 103, so 263 = 23× (260) = 23× (210)6 ≈ 23× (103)6 =
8*1018 or about eight quintillion, roughly the number of grains of sand in the world. My claim “ROOT can
handle datasets with up to 263 entries” is theoretical rather than practical.

Page 42 of 82 Basic Data Analysis Using ROOT 5/23/14

Exercise 8: Picking a physics cut (15 minutes)
Go back and run the macro you created in Exercise 5. If you’ve overwritten it, you can copy my
version:

> cp ~seligman/root-class/AnalyzeExercise5.C $PWD

The%chi2%distribution%and%the%scatterplot%hint%that%something%interesting%may%be%going%

on.%%

The%histogram,%whose%limits%I%originally%got%from%the%command%

tree1->Draw("chi2"),%looks%unusual:%there's%a%peak%around%1,%but%the%x/axis%
extends%far%beyond%that,%up%to%chi2%>%18.%Evidently%there%are%some%events%with%a%large%

chi2,%but%not%enough%of%them%to%show%up%on%the%plot.%

On%the%scatterplot,%we%can%see%a%dark%band%that%represents%the%main%peak%of%the%chi2%

distribution,%and%a%scattering%of%dots%that%represents%a%group%of%events%with%anomalously%

high%chi2.%

The%chi2%represents%a%confidence%level%in%reconstructing%the%particle's%trajectory.%If%the%

chi2%is%high,%the%trajectory%reconstruction%was%poor.%It%would%be%acceptable%to%apply%a%

cut%of%"chi2%<%1.5",%but%let's%see%if%we%can%correlate%a%large%chi2%with%anything%else.%%

Make a scatterplot of chi2 versus theta. It’s easiest if you just copy the relevant lines from
your code in Exercise 7; there’s a file AnalyzeExercise7.C in my area if it will help.

Take%a%careful%look%at%the%scatterplot.%It%looks%like%all%the%large/chi2%values%are%found%in%

the%region%theta%>%0.15%radians.%It%may%be%that%our%trajectory/finding%code%has%a%problem%

with%large%angles.%Let’s%put%in%both%a%theta%cut%and%a%chi2%cut%to%be%certain%we’re%looking%

at%a%sample%of%events%with%good%reconstructed%trajectories.%

Use an if statement to only fill your histograms if chi2 < 1.5 and theta < 0.15. Change the bin
limits of your histograms to reflect these cuts; for example, there’s no point to putting bins above
1.5 in your chi2 histograms since you know there won't be any events in those bins after cuts.

It%may%help%to%remember%that%the%symbol%for%logical%AND%in%C++%is%&&.%

A%tip%for%the%future:%in%a%real%analysis,%you'd%probably%have%to%make%plots%of%your%results%

both%before%and%after%cuts.%A%physicist%usually%wants%to%see%the%effects%of%cuts%on%their%

data.%%

I%must%confess:%I%cheated%when%I%pointed%you%directly%to%theta%as%the%cause%of%the%high/

chi2%events.%I%knew%this%because%I%wrote%the%program%that%created%the%tree.%If%you%want%

to%look%at%this%program%yourself,%go%to%the%UNIX%window%and%type:%

> less ~seligman/root-class/CreateTree.C

5/23/14 Basic Data Analysis Using ROOT Page 43 of 82

Exercise 9: A bit more physics (15 minutes)
Assuming a relativistic particle, the measured energy of the particle in our example n-tuple is
given by

�

Emeas
2 = px

2 + py
2 + pz

2

and the energy lost by the particle is given by

�

Eloss = Ebeam − Emeas
Create a new analysis macro (or revise one of the ones you’ve got) to make a scatterplot of

�

Eloss
vs. zv. Is there a relationship between the z-distance traveled in the target and the amount of
energy lost?

Exercise 10: Writing histograms to a file (10 minutes)
In all the analysis macros we’ve worked with, we’ve drawn any plots in the Wrap-up section.
Pick one of your analysis macros that creates histograms, and revise it so that it does not draw
the histograms on the screen, but writes them to a file instead. Make sure that you don't try to
write the histograms to “experiment.root”; write them to a different file named “analysis.root”.
When you're done, open “analysis.root” in ROOT and check that your plots are what you expect.

In%“Saving%your%work,%part%2”%on%page%24,%I%described%all%the%commands%you're%likely%to%

need.%

Don't%forget%to%use%the%ROOT%web%site%as%a%reference.%Here’s%a%question%that's%also%a%bit%

of%a%hint:%What%would%be%the%difference%between%opening%your%new%file%with%"UPDATE"%

access,%"RECREATE"%access,%and%"NEW"%access?%Why%might%it%be%a%bad%idea%to%open%a%file%

with%"NEW"%access?%(A%hint%within%a%hint:%what%would%happen%if%you%ran%your%macro%

twice?)%

Page 44 of 82 Basic Data Analysis Using ROOT 5/23/14

Exercise 11: Publishing your work (10 minutes)
Let's create a sample histogram:

[] TH1D h1("hist","My Final Results",100,-3,3)
[] h1.FillRandom("gaus",100000)
[] h1.Draw("e1")

Your task is to make this plot neat enough for publication. Some things to note:

• Don’t forget to label your axes. You can use "x [arbitrary units]" for the x-axis, and
"f(x) [arbitrary units]" for the y-axis.

• The x-axis label looks OK, but that y-axis label overlaps the numbers on the axis. You'll
have to figure out how to move the axis, the label, or both. Hint: SetTitleOffset.

• Print out the graph to check. Does anything look wrong?

• Do any of ROOT's pre-defined styles do the same thing?
%

I%did%this%in%front%of%you%at%the%start%of%the%class.%You%will%have%to%do%it%on%your%own%in%

nine%weeks,%as%you%prepare%your%final%talk%or%paper.%The%point%of%this%exercise,%as%you've%

probably%guessed,%is%to%have%you%figure%out%how%to%do%this%using%the%tools%and%

techniques%you've%learned%so%far.%Hopefully,%you’ll%still%remember%how%to%do%this%at%the%

end%of%the%summer.%

5/23/14 Basic Data Analysis Using ROOT Page 45 of 82

Exercise 12: Stand-alone program (optional) (up to 60 minutes
if you don’t know C++)

Why%would%you%want%to%write%a%stand/alone%program%instead%of%using%ROOT%

interactively?%Compiled%code%executes%faster;%maybe%you’ve%already%learned%about%the%

techniques%described%on%page%93%of%the%ROOT%User’s%Guide.%Stand/alone%programs%are%

easier%to%submit%to%batch%systems%that%run%in%the%background%while%you%do%something%

else.%The%full%capabilities%of%C++%are%available%to%you;%see%footnote%9%on%page%12.%

I’ll%be%honest%with%you:%I’m%spending%all%this%time%to%teach%you%about%interactive%ROOT,%

but%I%never%use%it.%I%can%develop%code%faster%in%a%stand/alone%program,%without%restarting%

ROOT%or%dealing%with%a%puzzling%error%message%that%refers%to%the%wrong%line%in%a%macro.%%

If%it’s%near%the%end%of%the%second%day,%don’t%bother%to%start%this%exercise.%But%if%you%have%

an%hour%or%more%//%well,%you’re%pretty%good.%This%exercise%is%a%bit%of%a%challenge%for%you.%

So far, you’ve used ROOT interactively to perform the exercises. Your task now is to write a
stand-alone program that uses ROOT. Start with the macro you created in Exercise 10: you have
a ROOT script (a ".C" file) that reads an n-tuple, performs a calculation, and writes a plot to a
file. Create, compile, and run a C++ program (a ".cc" file) that does the same thing.

You%can’t%just%take%Analyze.C,%copy%it%to%Analyze.cc,%and%hope%it%will%compile.%For%one%

thing,%Analyze.C%does%not%have%a%main%routine;%you%will%have%to%write%one.%Also,%C++%
doesn’t%know%about%the%ROOT%classes;%you%have%to%find%a%way%to%include%the%classes%in%

your%program.%There%are%links%on%this%page%that%may%help%you:%

<http://www.nevis.columbia.edu/~seligman/root/class/links.html>%

When%you%try%to%compile%the%program,%the%following%simple%attempt%won't%work:%

> g++ Analyze.cc -o Analyze

You%will%have%to%add%flags%to%the%g++%command%that%will%refer%to%the%ROOT%header%files%

and%the%ROOT%libraries.%You%can%save%yourself%some%time%by%using%the%root-config%
command.%Take%a%look%a%the%man%page%for%this%command:%

> man $ROOTSYS/man/man1/root-config.1

Try%it:%

> root-config --cflags
> root-config --libs

If%only%there%were%a%way%of%getting%all%that%text%into%your%compilation%command%without%

typing%it%all%over%again.%This%is%where%the%UNIX%“backtick”%comes%in%handy.%Try:%

> g++ Analyze.cc -o Analyze `root-config --cflags`

Be%careful%as%you%type%this;%it’s%not%the%usual%single%quote%(')%but%the%backtick%(`),%which%is%

typically%located%in%the%upper%left/hand%corner%of%a%computer%keyboard.%

Are%things%still%not%working?%Maybe%I%want%you%to%think%about%adding%more%than%one%

argument%to%a%single%command.%

That’s%enough%hints.%

Page 64 of 82 Basic Data Analysis Using ROOT 5/23/14

Other Tools (for both ROOT/C++ and pyroot)

TreeViewer (very definitely optional)
Start up a fresh ROOT session, open experiment.root with the TBrowser, and navigate to tree1.
Right-click on the tree1 icon, and select StartViewer.

You’re%looking%at%the%TreeViewer,%a%tool%for%making%plots%from%n/tuples%interactively.%

Everything%that%you’ve%done%with%experiment.root%(from%page%25%on)%can%be%done%more%

quickly%with%the%TreeViewer.%

Why%did%I%make%you%do%everything%the%hard%way?%Because%all%of%the%above%exercises%are%

much%simpler%than%what%you’ll%do%when%you%perform%a%real%physics%analysis.%The%

TreeViewer%is%handy%for%quick,%superficial%studies%of%n/tuples,%but%it’s%almost%certainly%

not%enough%to%get%you%through%the%work%you’ll%have%to%do%this%summer.%Any%serious%

analysis%work%will%involve%editing%ROOT%macros%and%writing%C++%code%or%pyroot%scripts.%

Still,%there%are%times%when%a%simple%tool%can%be%useful.%I%offer%the%following%optional%

exercise.%Treat%it%as%“playtime,”%not%serious%work.%

Exercise 13: Very optionally playing with TreeViewer
Using TreeViewer, repeat all of exercises 2 through 9.

This%may%sound%like%a%lot,%but%once%you%get%the%hang%of%it,%it%takes%less%than%ten%minutes.%

Use%the%Help%menu%on%the%TreeViewer%to%learn%how%to%use%it.%

5/23/14 Basic Data Analysis Using ROOT Page 65 of 82

References
You’ve learned a few techniques to figure out how to do something in ROOT:

• The ROOT web site

• The ROOT manual

• The Help menu located in the upper right-hand corner of most ROOT windows

• Create something “by hand,” save it as a .C file, then examine the file to see how ROOT
does it

There’s one other resource: the example ROOT programs that come with the package. You’ll
find them in $ROOTSYS/tutorials. When I ask myself the question “How do I do something
complicated in ROOT?” I often find the answer in one of the examples they provide.
I’ve found it handy to make my own copy:38
> cp –arv $ROOTSYS/tutorials $PWD

Then I go into the “tutorials” sub-directory, run their examples, and look at their code:
> cd tutorials
> root –l demos.C
> cd graphics
> root –l first.C
> less first.C

You’re%going%to%need%these%resources%as%you%move%into%the%topics%for%Parts%Four%and%Five%

of%the%tutorial.%I’m%going%to%do%less%“hand%holding”%in%these%notes%from%now%on,%because%

a%part%of%these%exercises%is%to%teach%you%how%to%use%these%references.
39
%

If%the%distributed%nature%of%the%information%is%annoying%to%you,%welcome%to%the%club!%I%

often%have%to%go%hunting%to%find%the%answers%I%want%when%using%ROOT,%even%after%years%

of%working%with%the%package.%Occasionally%I’ve%had%no%other%choice%but%to%examine%the%

C++%source%code%of%the%ROOT%program%itself%to%find%out%the%answer%to%a%question.%

38 If the command doesn’t work: Did you remember to type setup root in your UNIX command window?

That’s what sets the value of $ROOTSYS.
39 You can still ask me questions during the class; I mean that any remaining written hints in this tutorial will be

less detailed or require more thought.

Page 66 of 82 Basic Data Analysis Using ROOT 5/23/14

Dealing with PAW files (optional; for reference only) (5 minutes)
Before%ROOT,%physicists%used%a%package%called%CERNLIB%to%analyze%data.%You%won’t%be%

asked%to%work%with%CERNLIB%while%you%work%at%Nevis%(at%least,%I%hope%not),%but%it%may%be%

that%you’ll%be%asked%to%read%a%file%created%by%this%old%program%library.%

Suppose%someone%gives%you%a%file%that%contains%n/tuples%or%histograms,%and%tells%you%

that%the%file%was%created%with%PAW,%HBOOK,%or%CERNLIB%(actually,%to%first%order%these%are%

three%different%names%for%the%same%thing).%How%do%you%read%these%files%using%ROOT?%

The%answer%is%that%you%can’t,%at%least%not%directly.%You%must%convert%these%files%into%

ROOT%format%using%the%command%h2root.%%

For example, if someone gives you a file called "testbeam.hbook", you can convert it with the
command

> h2root testbeam.hbook

This%creates%a%file%"testbeam.root"%that%you%can%open%in%the%ROOT%browser.%

There%is%no%simple%way%of%converting%a%ROOT%file%back%into%PAW/HBOOK/CERNLIB%

format.%You%generally%have%to%write%a%custom%program%with%both%FORTRAN%and%C++%

subroutines%to%accomplish%this%task.%

Note%that%the%h2root%command%is%set%up%(along%with%ROOT)%with%the%command%

> setup root

that%you%type%when%you%log%in.%If%you%accidentally%type%h2root%(or%root)%before%you%
set%up%ROOT,%you'll%get%the%error%message:%

h2root: Command not found

You can get more information about "h2root" by using a special form of the man command:
> man $ROOTSYS/man/man1/h2root.1

There's also information on page 22 of the ROOT Users Guide.

5/23/14 Basic Data Analysis Using ROOT Page 67 of 82

Part Four – Advanced Exercises
If you still haven’t finished the exercises for Parts One, Two, or Three, then keep working on
them. The following exercises are relevant to larger-scale analyses, but may not be relevant to
the work that you’ll be asked to do this summer.

If%this%class%is%your%first%exposure%to%programming,%then%these%exercises%are%hard,%and%the%
smart/aleck%footnotes%and%xkcd%cartoons%aren’t%going%to%change%that.%Don’t%feel%bound%

by%the%suggested%times.%Use%the%references%to%learn%enough%about%programming%to%try%

to%get%the%next%exercise%done%by%the%end%of%the%workshop.%%

It’s%your%choice%whether%to%do%the%exercises%in%C++%or%pyroot.%%I’m%going%to%discuss%them%

in%C++%terms,%mainly%because%that’s%my%preferred%programming%language.%Working%in%

pyroot%will%pose%its%own%set%of%challenges,%especially%when%dealing%with%ROOT%functions%

that%take%arrays%as%arguments.%You’ll%learn%something%either%way!%

Before we get to those exercises, let’s consider some more advanced topics in ROOT.

Working with folders inside ROOT files
As%you%worked%with%the%TBrowser,%you%may%have%realized%that%ROOT%organizes%its%

internal%resources%in%the%form%of%“folders,”%which%are%conceptually%similar%to%the%

hierarchy%of%directories%on%a%disk.%You%can%also%have%folders%within%a%single%ROOT%file.%%

Folders%are%discussed%in%Chapter%10%in%the%ROOT%Users%Guide,%but%I%have%not%seen%the%

approach%they%describe%(the%TTask%class)%used%in%any%experiment%on%which%I’ve%worked.%

Instead%I’ll%focus%on%ROOT%folders%in%the%way%they’re%more%often%used%(if%they’re%used%at%

all):%to%organize%objects%within%a%file.%

Copy the file folders.root from my root-class directory into your own, and use the
ROOT TBrowser to examine its contents.

You’ll%see%three%folders%within%the%file:%example1,%example2,%and%example3.%Each%of%

these%folders%will%be%the%basis%of%the%next%three%exercises.%

All%three%exercises%will%require%you%to%make%a%plot%of%data%points%with%error%bars.%You’ll%

want%to%use%the%TGraphErrors%class%for%this.%

Page 68 of 82 Basic Data Analysis Using ROOT 5/23/14

A little bit more about inheritance
Look up the TGraphErrors class on the ROOT web site. After you’ve looked over what little
help there is on this page, click on the Source tab to see an example of how the class is used. At
the top of the page it says “TGraphErrors: public TGraph”; click on the TGraph link to find out
where to look for options when drawing the graph.

The%“public%TGraph”%part%means%that%the%class%TGraphErrors%is%inherited%from%the%

TGraph%class.%If%you%don’t%know%about%class%inheritance%in%C++%yet,%don’t%worry.%For%now,%

it’s%enough%to%know%that%if%class%“Derived”%inherits%from%class%“Base”,%class%Derived%will%

have%all%the%methods%and%properties%of%class%Base,%plus%some%additional%features.
40
%%%

Here’s%a%simple%example:%If%you%saw%“Circle:%public%Shape”%in%the%ROOT%reference%guide,%

it%would%mean%that%the%class%Circle%derives%from%the%class%Shape.%If%Shape%had%a%Draw()%

method,%then%Circle%would%have%a%Draw()%method%as%well.%

A%more%relevant%example:%TGraphErrors%inherits%from%TGraph.%Since%TGraph%has%a%

Draw()%method,%so%does%TGraphErrors;%TGraph%also%has%a%Fit()%method,%a%GetMean()%

method,%and%a%Print()%method;%therefore%TGraphErrors%has%those%methods%too.%

However,%TGraphErrors%has%a%SetPointError()%method,%and%TGraph%does%not.%(To%

continue%the%above%analogy,%a%Circle%class%might%have%a%GetRadius()%method%that%a%more%

general%Shape%class%would%not%have.)%

You may have noticed that TGraph, in turn, inherits from Named and some other classes. Click
on the Named link; you’ll see that Named inherits from TObject. Does TObject inherit from any
other class?

Figure 13: http://xkcd.com/688 by Randall Munroe

40 For those familiar with the issues of public inheritance: yes, I’m skipping over a lot of details, such as the

distinction between virtual versus non-virtual methods.

5/23/14 Basic Data Analysis Using ROOT Page 69 of 82

Container classes
Go back to the description of the TGraphErrors class. To create a TGraphErrors object, you need
to supply some arguments.

These%are%all%different%ways%to%construct%a%plot%with%error%bars:%

• TGraphErrors()%–%This%is%used%internally%by%ROOT%when%reading%a%TGraphErrors%

object%from%a%file.%You%won’t%use%this%method%directly.%

• TGraphErrors(Int_t%n)%–%You%use%this%when%you%just%want%to%supply%TGraphErrors%

with%the%number%of%points%that%will%be%in%the%graph,%then%use%the%SetPoint()%and%

SetPointError()%methods%to%assign%values%and%errors%to%the%points.%

• TGraphErrors(const%TGraphErrors&%gr)%–%This%is%called%a%“copy%constructor”%in%

C++,%and%is%used%when%you%copy%a%TGraphErrors%object.%You%can%ignore%this.%

• TGraphErrors(const%TH1*%h)%–%You%use%this%to%create%a%TGraphErrors%plot%based%

on%values%in%a%histogram.%

Now%that%I’ve%give%you%a%guide%to%the%first%four%ways%to%construct%a%TGraphErrors%object,%

you%can%probably%figure%out%what%the%next%five%are:%to%create%one%from%the%contents%of%a%

file,%and%to%create%plots%from%either%float%or%double/precision…%somethings.%

Those%somethings%are%containers.%In%ROOT%and%C++,%there%are%three%general%categories%

of%containers%you%have%to%know%about.%

Arrays
Do a web search on “C++ arrays” to learn about these containers. Briefly, to create a double-
precision array of eight elements, you could say:

Double_t myArray[8];

To refer to the 3rd element in the array, you might use (remember, in C++ the first element has an
index of 0):

Int_t i = 2;
myArray[i] = 0.05;

If you’re new to C++, it won’t be obvious that while myArray[2] is a Double_t object, the type
of the name myArray (without any index) is Double_t*, or a pointer to a Double_t (see page 28).
Getting confused? Let’s keep it simple. If you’ve created arrays with values and errors…

Double_t xValue[22];
Double_t xError[22];
Double_t yValue[22];
Double_t yError[22];

…and you’ve put numbers into those arrays, then you can create a TGraphErrors with:
TGraphErrors* myPlot = new TGraphErrors(22,xValue,yValue,xError,yError);

Page 70 of 82 Basic Data Analysis Using ROOT 5/23/14

Arrays (continued)
Did%you%notice%a%problem%with%that%example?%I%had%to%supply%a%fixed%value%for%the%

number%of%points%in%each%array%to%make%the%plot.%In%general,%you%won’t%be%able%to%do%

that;%in%fact,%in%exercises%15%and%16%below%you%can’t%do%that.%
In%C++,%one%way%to%get%around%this%problem%is%to%use%“dynamic%arrays.”%I’ll%let%you%read%

about%those%on%the%web%(search%on%“C++%dynamic%arrays”),%but%I’m%not%going%to%say%more%

about%them,%because%I%rarely%use%them.%

ROOT’s containers
Go to the Class Index page of the ROOT Reference Guide on the web. Near the top of the page
there’s a list of categories; click on CORE, then on CONT. You’ll see a list of ROOT’s container
classes, along with links for information about collections and why they’re used. Read the
“Understanding Collections” page, and at least skim the chapter about collections in the ROOT
Users Guide.

I’ll%be%blunt%here,%and%perhaps%editorialize%too%much:%I%don’t%like%ROOT’s%collection%

classes.%The%main%reason%is%that%most%of%them%can%only%hold%pointers%to%classes%that%

inherit%from%TObject.%For%example,%if%you%wanted%to%create%a%TList%that%held%strings%or%

double/precision%numbers%(TString%and%Double_t%in%ROOT),%you%can’t%do%it.%

Go back to the TGraphErrors page. The seventh way to create a TGraphErrors object has a
TVectorD link; click on that link to read the description. Learn much? Try clicking on
TVectorT<double>.

This%is%ROOT’s%answer%to%the%issue%I%just%raised:%they%provide%special%containers%for%

certain%types.%

You%need%to%know%a%little%about%ROOT’s%collection%classes%to%be%able%to%understand%how%

ROOT%works%with%collections%of%objects;%exercise%16%below%is%an%example%of%this.%For%any%

other%work,%I’m%going%to%suggest%something%else:%

Standard Template Library (STL)
Do a web search on “standard template library”. This will probably take you to SGI’s web site at
first. Skim a few sites, especially those that contain the words “introduction” or “tutorial”. You
don’t have to get too in-depth; for example, you probably don’t have enough time today to fully
understand the concept of iterators.

Did%you%guess%that%STL%is%my%preferred%method%of%using%containers%in%C++?%

5/23/14 Basic Data Analysis Using ROOT Page 71 of 82

Vectors
The%Standard%Template%Library%is%an%important%development%in%the%C++%programming%

language.%It%ties%into%the%concepts%of%design%patterns%and%generic%programming,%and%you%

can%spend%a%lifetime%learning%them.
41
%

For%the%work%that%you’ll%be%asked%to%do%in%Parts%Four%and%Five,%and%probably%for%the%rest%

of%this%summer,%there’s%only%one%STL%class%you’ll%have%to%understand:%vectors.%Here%are%

the%basics:%

If you want to use vectors in a program, or even a ROOT macro, you have to put the following
near the top of your code:
#include <vector>

To create a vector that will contain a certain type, e.g., double-precision values:
std::vector<Double_t> myVector;

If you want to create a vector with a fixed number of elements, e.g., 8:
std::vector<Double_t> myOtherVector(8);

To refer to a specific element of a vector, use the same notation that you use for C++ arrays:
myOtherVector[2] = 0.05;

To append a value to the end of the vector, which will make the vector one element longer, use
the push_back() method:

myVector.push_back(0.015);

To find out the current length of a vector, use the size() method:
Int_t length = myVector.size();

Here’s a simple code fragment that loops over the elements of a vector and prints them out.
for (Int_t i = 0; i != someVector.size(); ++i)
{
 std::cout << “The value of element “ << i
<< “ is “ << someVector[i] << std::endl;
}

You have a vector, but TGraphErrors wants a C++ array name. Here’s the trick:
// Define four vectors.
std::vector<Double_t> x,y,ex,ey;
// Put values in the vectors (omitted so you can do it!)
Int_t n = x.size();
TGraphErrors* plot = new TGraphErrors(n, &x[0], &y[0], &ex[0], &ey[0]);

In other words, if v has the type std::vector<Double_t>, then &v[0] is a Double_t*
(a pointer to Double_t) that’s equivalent to an array name.42

41 I’ve lost track of the number of your lifetimes I’ve spent. You’re probably tired of the joke anyway.
42 In full C++ (see footnote 9 on page 10) there’s a better way: if v is a vector, then v.data() is equivalent to the

underlying array. Unfortunately, this is not available in ROOT’s CINT.

Page 72 of 82 Basic Data Analysis Using ROOT 5/23/14

Exercise 14: Create a basic x-y plot (1-2.5 hours)
You’re going to re-create that “pun plot” that I showed during my initial talk:

Figure 14: Can you spot the pun in this plot?

Hint: It involves the composer of a piece of music for piano and orchestra written in the early 20th century.

Use the histograms in folder example1 file folders.root. The y-values and error bars will come
from fitting each histogram to a gaussian distribution; the y-value is the mean of the gaussian,
and the y-error is the width of the gaussian.

You’ve%spent%five%pages%reading%about%abstract%concepts%and%are%probably%eager%to%do%

some%work,%but%there’s%still%a%couple%of%things%you’ll%have%to%figure%out.%

(continued on next page)

t [secs]
-110 1 10 210 310

Fa
lla

d
io

ns
n

12

14

16

18

20

22

24

26

28

Number of charged atoms in ’Nights in the Gardens of Spain’

5/23/14 Basic Data Analysis Using ROOT Page 73 of 82

First%of%all,%there’s%no%n/tuple%in%this%exercise.%You’ll%have%to%create%a%ROOT%or%pyroot%

macro%to%create%the%graph%on%your%own.
43
%You’ve%seen%some%macros%before%(remember%

c1.C?),%and%you’ll%find%many%more%in%the%ROOT%tutorials.%

Want%to%see%more%examples%of%using%TGraphErrors?%Look%at%the%ROOT%tutorials%

directory.%The%problem%is%that%there%are%lots%of%examples;%how%do%you%find%those%that%

use%TGraphErrors?%I%copied%the%ROOT%tutorials%directory%(see%page%46),%and%then%I%used%

the%UNIX%grep%command:%

> cd tutorials
> grep –rl TGraphErrors *

This%will%list%the%names%of%the%files%that%contain%the%text%“TGraphErrors”.%That’s%how%I%

found%out%how%to%draw%a%TGraphErrors%plot%inside%a%ROOT%canvas.%

The%UNIX%grep%command%is%very%useful;%type%man grep%to%learn%about%it.44%

You need to figure out how to get the x-values. In this case, it’s relatively simple. There are only
six histograms in the example1 folder. In TBrowser, double-click on the histograms and read the
titles. The histograms are numbered from hist0 to hist5; so you can derive a formula to go from
the histogram index to the value of x.
You already know how to open a ROOT file within a macro (it was part of exercise 10 on page
43), but it’s not obvious how to “navigate” to a particular folder within a file. Look at the
description of the TFile class on the ROOT web site. Is there a method that looks like it might
get a directory?

By%now,%you’ve%probably%gotten%the%idea%that%for%ROOT%to%know%where%to%look%to%plot,%

read,%or%write%something,%it%has%to%know%where%to%“focus.”%If%an%object%requires%focus%in%

some%way,%it%will%have%a%cd()%method%(short%for%“change%directory”).%Based%on%that%hint,%

and%what%you%can%see%on%the%TFile%web%page,%something%like%this%might%work:%

TDirectory* example1 = inputFile->GetDirectory(“example1”);
example1->cd();

The%histograms%are%numbered%0%to%5%consecutively.%It%would%be%nice%to%write%a%loop%to%

read%in%“hist0”,%“hist1”,%…%“hist5”%and%fit%each%one.%But%to%do%that,%you%have%to%somehow%

convert%a%numeric%value%to%a%text%string.%

(continued on next page)

43 You could try typing the commands on the ROOT command line one-by-one. Unless you have a shining grasp of

ROOT concepts and perfect typing skills, you’re going to make mistakes that will involve many quit-and-restarts
of ROOT. It’s much easier to write and edit a macro.

44 Optional tangent:

 grep is a program that implements “regular expressions,” a powerful method for searching, replacing, and
processing text. More sophisticated programs that use regular expressions include sed, awk, and perl. Regular
expressions are used in manipulating text, not numerical calculations, so their deep nitty-gritty is rarely relevant
in physics.

 Regular expressions are a complex topic, and it can take a lifetime to learn about them. (You may be tired of the
joke, but I’m not!)

Page 74 of 82 Basic Data Analysis Using ROOT 5/23/14

If%you%know%C%or%C++,%you%already%know%ways%to%do%this%(and%in%python%it’s%trivial).%If%all%

this%is%new%to%you,%here’s%one%way%to%do%it:%

#include <sstream> // put this near the top of your macro
for (Int_t i = 0; i != 6; ++i)
{
 std::ostringstream os;
 os << “hist” << i;
 TString histogramName = os.str();
 // … do what you need to with histogramName
}

There%are%other%problems%you’ll%have%to%solve:%

• How%do%you%read%a%histogram%from%a%file?%Or%the%more%general%question%is:%How%

do%you%get%a%ROOT%object%from%a%file?%%

Hint:%How%do%you%“get”%an%object%from%a%TFile?%(Once%you’ve%figured%this%out,%you%might%

want%to%use%the%tip%about%GetObject.%Look%through%the%tutorial%files%for%more%clues.)%

• Once%you%fit%a%histogram%to%a%gaussian%distribution,%how%do%you%get%the%mean%

and%width%of%the%gaussian%from%the%fit?%%

Hint:%Look%through%the%histogram%methods;%click%through%the%links%to%other%classes.%The%

TH1D%page%doesn’t%list%the%method%you’ll%need,%but%the%TH1%page%does.%

• In%the%above%plot,%the%x/axis%is%logarithmic.%How%do%you%make%that%change?%%

Hint:%Remember%how%you%found%out%how%to%label%an%axis?%

• Speaking%of%axis%labels,%how%do%you%put%in%
nions

d Falla() ?%%

Hint:%look%up%TLatex%in%the%ROOT%web%site.%You%don’t%have%to%declare%a%TLatex%object;%

just%put%the%text%codes%into%the%axis%label%and%ROOT%will%interpret%them.
45
%

• How%do%you%get%the%marker%shapes%and%colors%as%shown%in%the%plot?%%

Some%looking%around%the%ROOT%web%site%should%give%you%the%answer.%

45 Another tangent:

 LaTeX is a document-preparation package that’s often used in research. If you write a paper for publication this
summer, you are going to use LaTeX; physics publications don’t accept articles in MS-Office format. A real
LaTeX document is much more complex than you’ll read about in the TLatex documentation, but don’t worry
about that. No one writes a LaTeX document from scratch; they get one from someone and learn by example. It’s
much easier than learning ROOT. It’s closer to another page mark-up language, HTML, which you’ve probably
seen before.

 You can spend a lifetime learning LaTeX, but no one ever has.

5/23/14 Basic Data Analysis Using ROOT Page 75 of 82

Exercise 15: A more realistic example of an x-y plotting task (1-
2 hours)
Take a look at folder example2 in folders.root. You’ll see a bunch of histograms, and an n-tuple
named histogramList. Right-click on histogramList and Scan the n-tuple. On the ROOT text
window, you’ll see that the n-tuple is a list of histogram ID numbers and an associated value.
Once again, you’re going to fit all those histograms to a gaussian and make an x-y plot. The y
values and error bars will come from the fits, as in the previous exercise. The x values will come
from the n-tuple; for example, the value of x for histogram ID 14 is 1.0122363.
I’ll let you pick the axis labels for this graph; don’t make the x-axis logarithmic.

Figure 15: http://xkcd.com/1162 by Randall Munroe

You’ve%probably%already%figured%out%that%you%can%use%MakeClass%on%the%histogramList%

n/tuple,%just%like%you%did%on%page%30.%The%challenge%will%be%putting%together%the%code%

inside%the%Loop%method%of%the%new%class%with%bits%and%pieces%from%the%previous%exercise.%

In%the%previous%exercise,%perhaps%you%hard/coded%the%number%of%histograms%in%the%

folder.%Don’t%do%that%here.%You%could%get%the%number%of%histograms%from%the%number%of%

entries%in%the%n/tuple.%

Or%maybe%that’s%not%a%good%idea;%what%if%there%were%an%entry%in%the%n/tuple%but%no%

corresponding%histogram?%Keep%a%separate%count%of%the%number%of%“valid”%histograms%

you’re%able%to%read.%This%means%you’ll%have%to%check%if%you’ve%read%each%histogram%

correctly.%Tip:%If%a%ROOT%operation%to%read%a%pointer%fails,%that%pointer%will%be%set%to%zero%

(see%page%78).%

Page 76 of 82 Basic Data Analysis Using ROOT 5/23/14

Part Five – Expert Exercises

Exercise 16: A brutally realistic example of a plotting task (1-2
hours)
Now take a look at folder example3. You probably already looked in there, and were
overwhelmed with the number of histograms.
Here’s the task: it’s another x-y plot, with the y values and error bars from fitting the histograms.
You only want to include those histograms whose names begin with “plotAfterCuts”; the other
histograms you can ignore.
The x values come from the histograms themselves. Double-click on a few histograms to plot
them. You’ll see that the x values are in the titles (not the names!) of the histograms.

You’ll%be%able%to%re/use%the%code%you%developed%for%the%previous%two%exercises.%There%

are%some%new%problems%to%solve:%how%to%get%the%list%of%all%the%histograms%in%the%

example3%folder,%how%to%test%if%a%histogram’s%name%begins%with%“plotAfterCuts”,%and%

how%to%convert%a%histogram’s%title%from%string%form%to%a%number.%

Let’s%think%about%the%easier%problems%first.%%

If%you’re%fairly%familiar%with%C%or%C++,%you%probably%already%know%how%to%convert%strings%

into%numbers.%If%you’re%not,%then%I%suggest%you%take%a%look%at%the%description%of%the%

TString%class%on%the%ROOT%web%site;%the%Atof()%method%looks%interesting.%%

The%TString%class%is%pretty%good%about%converting%string%formats%implicitly.
46
%You%

probably%already%figured%out%how%to%look%up%getting%the%title%from%a%histogram.%The%

method%returns%“const%char%*”%but%something%like%this%will%work:%

TString title = histogram->GetTitle();

What%about%testing%if%the%text%in%a%TString%begins%with%“plotAfterCuts”?%Take%another%

look%at%the%TString%web%page.%Is%there%a%method%that%looks%like%it%might%help%you%with%

that%test?%

46 Optional digression: There are three main ways of handling strings in ROOT/C++:

- The original way from the older language C, as an array of char: char oldStyleString[256];

- A newer way, added to the C++ language: std::string newStyleString;

- The ROOT way: TString rootStyleString;

 Which is better? My attitude is that none of them is best. In a ROOT program, I tend to use TString; if my
program doesn’t use ROOT, I use std::string for string variables and arrays of char for constant strings.

 Until recently, C++ didn’t have the built-in text manipulation facilities of languages like perl or python. This can
be important in a physics analysis procedure; while your calculations are based on numbers, manipulating files or
program arguments can be based on strings. The latest language update, C++11, has a “regex” library for
handling regular expressions, but this feature is not in ROOT’s CINT.

5/23/14 Basic Data Analysis Using ROOT Page 77 of 82

Exercise 16 (continued)
The%next%problem%is%trickier:%How%do%you%get%a%list%of%objects%in%a%directory?%

By%now%you’ve%got%the%hang%of%the%above%hint:%I%want%to%“Get”%a%“List”%of%objects%in%a%

directory.%When%I%worked%on%this%problem,%I%went%to%the%TFile%web%page%and%looked%for%

methods%with%names%that%began%with%“GetList”.%I%clicked%on%the%name%of%the%method…%

then%pounded%my%head%against%the%desk.
47
%

I%finally%got%the%answer%by%using%the%UNIX%grep%command%to%search%through%the%ROOT%

tutorials%directory%for%the%text%“GetList”.%There%are%many%files%there%with%a%“GetList…”%

call,%but%one%file%name%stood%out%for%me,%and%I%looked%at%it%first.%Since%I%had%read%the%TList%

web%page%first,%I%could%see%that%the%answer%was%there.%But%it’s%written%in%a%sloppy%fashion%

that%you’d%have%to%change.%

To%understand%what%you’d%have%to%change,%consider%a%chain%of%class%inheritance%that’s%

similar%to%what%you%looked%at%on%page%66:%

Go to the web page for class TH1D. It inherits from two classes, TH1 and TArrayD; ignore the
latter for now. Click on the TH1 link to see from which classes TH1 inherits. Eventually you’ll
work your way up to the class TObject.
Go back to the TH1D page, and search for the “Class Charts” section. You’ll see a diagram of
the inheritance; you’ll note that there’s another class, TProfile, which inherits from TH1D.

In%C++,%the%practical%aspect%of%class%inheritance%is%that%you%can%use%a%pointer%to%a%base%

class%to%refer%to%a%derived%class%object;%if%class%Derived%inherits%from%class%Base,%you%can%

do%this:%

Base* basePointer = new Derived();

If%that’s%a%little%abstract%for%you,%consider%this%in%terms%of%the%classes%with%which%you’ve%

worked.%Any%of%the%following%is%correct%in%C++:%

TH1D* doublePrecisionHistogram = new TH1D(…);
TH1* histogram = new TH1D(…);
TObject* genericRootObject = new TH1D(…);

Why%does%this%matter?%Because%ROOT%does%not%read%or%write%histograms,%functions,%

n/tuples,%nor%any%other%specific%object.%ROOT?reads?and?writes?pointers?to?class?TObject.%
After%you%read%in%a%TObject*,%you’ll%probably%want%to%convert%it%to%a%pointer%to%

something%useful.% %

47 Optional editorializing again: If you followed the steps I just described and saw the same thing I did, it’s pretty

clear what happened: the person who wrote the method intended to supply some comments later.

 Here’s a tip for writing code that will make you a hero: “later” does not exist. (As of 2014, the ATLAS
collaboration has collected 25 fb-1 of data, and they still haven’t discovered evidence of “later”!) Treat the
comments as part of the code-writing process. If you have to edit the code, edit the comments.

 Yes, I know it’s a pain. But pounding your head on a desk is a bigger pain. It’s the biggest pain of all when you
realize that you wrote the code six months ago, have completely forgotten what it means, and must now spend an
hour figuring it out. It would have taken five seconds to write a comment.

Page 78 of 82 Basic Data Analysis Using ROOT 5/23/14

Exercise 16 (continued)
In%C++,%the%simplest%way%to%attempt%to%convert%a%base%class%pointer%to%a%derived%class%

pointer%something%like%this%(assuming%genericRootObject%is%a%TObject*):%

TH1* histogram = (TH1*) genericRootObject;
If (histogram == 0)
{
 // The genericRootObject was not a TH1*
}
else
{
 // The genericRootObject was a TH1*; you can use it for things like:
 histogram->FillRandom(“gaus”,10000);
 histogram->Draw();
}

If%I%didn’t%put%that%test%in%there%and%just%tried%histogram/>FillRandom(“gaus”,10000),%and%

histogram==0,%then%the%program%would%crash%with%a%segmentation%fault.
48
%%

%

Figure 16: http://xkcd.com/371 by Randall Munroe

Why%did%I%just%take%one/and/half%pages%to%go%over%such%a%dry%topic?%

• Understanding%object%inheritance%makes%it%clear%why%the%macros%that%ROOT%

automatically%creates%for%you%use%pointers,%why%those%container%classes%you%saw%

on%page%70%only%contain%TObject*,%and%other%aspects%of%ROOT.%

• It’s%so%when%you%see%a%line%like%this%in%the%ROOT%tutorials,%you%have%an%idea%of%

what%it’s%doing:%using%a%TKey%to%read%in%a%TObject*,%then%converting%it%to%a%TH1F*:%

h = (TH1F*)key->ReadObj();

Now%you%should%have%an%idea%of%how%to%edit%this%line%to%do%what%you%want%to%do…%and%

how%to%check%if%what%you’ve%read%is%actually%a%histogram,%or%is%instead%some%other%object%

that%was%placed%inside%that%folder.%

48 If you haven’t encountered a segmentation fault yet in this tutorial, you’re either very lucky or very good at

managing your pointers. Now you know why it happens: someone tried to call a method for an object that wasn’t
there.

5/23/14 Basic Data Analysis Using ROOT Page 79 of 82

Exercise 17: Data reduction (1-2 hours)
Up%until%now,%we’ve%considered%n/tuples%and%histograms%that%someone%else%has%created%

for%you.%The%process%by%which%a%file%that%contains%complex%data%structures%is%converted%

into%a%relatively%simple%n/tuple%is%part%of%a%larger%process%called%“data%reduction.”%It’s%

usually%a%necessary%step%in%the%overall%physics%analysis%chain.%%

As%I%implied%in%the%first%day%of%this%tutorial,%perhaps%you’ll%be%given%an%n/tuple%and%told%to%

work%with%it.%However,%it’s%possible%you’ll%be%given%a%file%containing%the%next/to/last%step%

in%the%analysis%chain:%a%file%of%C++%objects%with%data%structures.%You’d%want%to%extract%

data%from%those%structures%to%create%your%own%n/tuples.%

Copy the following files from my root-class directory:
 ExampleEvent.h
 exampleEvents.root
 libExampleEvent.so
The file exampleEvents.root contains a ROOT tree of C++ objects. The task is to take the event
information in those C++ objects and reduce it to a relatively simple n-tuple.
First, take a look at ExampleEvent.h. You’re not going to edit this file. It’s the file that someone
else used to create the events in the ROOT tree. If you’re given an ExampleEvents object, you
can use any of the methods you see to access information in that object; for example:

ExampleEvent* exampleEvent;
// Assume we fill in exampleEvent somehow.
Int_t numberLeptons = exampleEvent->GetNumberLeptons();

For this hypothetical analysis, you’ve been told that the following information is to be put into
the n-tuple you’re going to create:

- the run number;
- the event number;
- the total energy of all the particles in the event;
- the total number of particles in the event.
- a boolean indicator: does the event have only one muon?
- the total energy of all the muons in the event;
- the number of muons in the event;

The task is to write the code to read the events in exampleEvents.root and write an n-tuple to a
different file, exampleNtuple.root.

(continued on the next page)

Page 80 of 82 Basic Data Analysis Using ROOT 5/23/14

Exercise 17 (continued)
After%what%you’ve%done%before,%your%first%inclination%may%be%to%open%

exampleEvents.root%directly%in%ROOT%and%look%at%it%with%the%TBrowser.%Go%ahead%and%try%

it.%

It%doesn’t%fail,%but%you’ll%get%an%error%message%about%not%being%able%to%find%a%dictionary%

for%some%portions%of%the%ExampleEvent%class.
49
%I%mentioned%this%earlier%in%footnote%19%on%

page%Error!%Bookmark%not%defined.:%it’s%possible%to%extend%ROOT’s%list%of%classes%with%
your%own%by%creating%a%custom%dictionary.%Only%classes%that%have%a%dictionary%can%be%

fully%displayed%using%the%ROOT%browser.%

Try%to%see%how%much%of%the%ExampleEvent%tree%you%can%see%without%the%dictionary.%Then%

restart%ROOT%and%type%the%following%ROOT%command:%

[] gSystem->Load("libExampleEvent.so");

This%causes%ROOT%to%load%in%the%code%for%a%dictionary%that%I’ve%pre/compiled%for%you.
50
%

Now%you%can%open%the%exampleEvents.root%using%a%TFile%object%and%use%the%ROOT%

browser%to%navigate%through%the%ExampleEvent%objects%stored%in%the%tree.%

As%you%look%at%the%file,%you’ll%see%that%there’s%a%hierarchy%of%objects.%There’s%only%one%

object%in%the%file,%exampleEventsTree.%Inside%that%tree,%there%is%only%one%“branch”,%

exampleEventsBranch.%%

That’s%a%bit%of%a%clue:%a%ROOT%n/tuple%is%actually%a%TTree%object%with%one%Branch%for%every%

simple%variable.%

(continued on the next page)

49 If you didn’t get such a message, then you probably copied rootlogon.C from my root-class directory to

your working directory. That’s OK, but you might want to temporarily rename this file and restart ROOT just so
you can see that error message. That way you’ll know how it looks if you have a missing-dictionary problem.

50 This library may not work if you’re on a different kind of system than the one on which I created the library. If
you get some kind of load error, here’s what to do:

 Copy the following additional files from my root-class directory:

 LinkDef.h
ExampleEvent.cxx
BuildExampleEvent.cxx
BuildExampleEvent.sh

 Run the UNIX command script with:

 > sh BuildExampleEvent.sh

 This will (re-)create the libExampleEvent shared library. It will also create the program BuildExampleEvent,
which I used to create the file exampleEvent.root.

 If you’re running this on a Macintosh, the name of the library will be libExampleEvent.dylib; that’s the name to
use in the gSystem->Load() command in the Mac version of ROOT.

5/23/14 Basic Data Analysis Using ROOT Page 81 of 82

Exercise 17 (continued)
At%this%point,%you%could%use%MakeClass()%to%create%a%ROOT%macro%for%you,%but%I%suggest%

that%you%only%do%this%to%get%some%useful%code%fragments%to%copy%into%your%own%macro.
51
%

I’ll%offer%you%the%following%additional%hints:%

- The%first%line%of%your%ROOT%macro%for%this%exercise%is%likely%to%be%the%library%load%

command%on%the%previous%page.%

- If%you’re%writing%a%stand/alone%program,%instead%of%loading%the%library%you’ll%have%

the%line:%

#include “ExampleEvent.h”

and%include%libExampleEvent.so%on%the%line%you%use%to%compile%your%code.%

- Look%at%the%examples%in%the%tutorials/tree%directory,%on%the%TTree%web%page,%and%

in%the%macro%you%created%with%MakeClass%(if%you%chose%to%make%one).%

- Yes,%the%ampersands%are%important!%

51 Why don’t I want to you use MakeClass here? The answer is that some physics experiments only use ROOT to

make n-tuples; they don’t use it for their more complex C++ classes. In that case, you won’t be able to use
MakeClass because you won’t have a ROOT dictionary. It’s likely that such a physics experiment would have its
own I/O methods that you’d use to read its physics classes, but you’d still use a ROOT TTree and branches to
write your n-tuple.

Page 82 of 82 Basic Data Analysis Using ROOT 5/23/14

Wrap-up
The last four exercises that make up Parts Four and Five are difficult. I chose those tasks because
they represent the typical kind of work that I find myself doing whenever I use ROOT: pulling
together documentation from different places, translating the examples into the work I’m
actually doing… and pounding my head against the desk whenever there are no comments, or I
get yet another segmentation fault.52
If you’d like to see how I solved those same exercises, you’ll find my code in PlotGraphs.C (for
exercises 14-16) and MakeNtuple.C (for exercise 17).53
Good luck!54

Figure 17: http://xkcd.com/722 by Randall Munroe

Alt-text: “This is how I explain computer problems to my cat. My cat usually seems happier than me.”

52 Now you know the reason for my going bald!
53 Maybe you’re thinking, “Wow! It’s lucky I turned to the last page before I actually started doing any of the

work!” Take my word for it: reading my solutions is not a substitute for working through the problem yourself.
54 Total lifetimes used up: up to nine, depending on you chose to learn both ROOT/C++ and pyroot, which tangents

you took, how much LaTeX you study, and whether you devote yourself to physics. I generously give any
remaining lives back to you.

