PARTIE C - Thèmes transverses - Corrigé

C.1/ Mouvement de l'électron de l'atome d'hydrogène dans le modèle de Thomson.

C.1.1 La distribution de charge positive de densité ρ = e/ (4/3 π R³) crée en tout point M un champ à symétrie sphérique $\stackrel{\rightarrow}{E}$ = E(r) $\stackrel{\rightarrow}{e}$ r Le théorème de Gauss appliqué à une sphère de rayon r < R donne la relation suivante : E(r) x 4 π r² = ρ x4/3 x π r³ / ϵ_0 soit E (r) = ρ r/3 ϵ_0

$$E(r) = \frac{e}{4\pi\epsilon_0 R^3} r \quad \text{avec} \quad k = \frac{e}{4\pi\epsilon_0 R^3}$$

C.1.2.1 Il est soumis à une force centrale \vec{F} = - ek \vec{r} .Le mouvement est donc plan ou selon une droite (selon les conditions initiales).

En effet, le moment cinétique σ_0 de l'électron est une constante ; le mouvement se fait dans un plan perpendiculaire à lorsque ce vecteur n'est pas nul.

$$\overrightarrow{\sigma}_0 = m \overrightarrow{OM}_0 \wedge \overrightarrow{v}_0$$

C.1.2.2 L'équation du mouvement s'écrit :

$$\mathsf{m} \ \frac{d^2\vec{r}}{dt^2} + \mathsf{ek} \ \vec{r} = \vec{0}$$

C'est l'équation d'un oscillateur harmonique spatial de pulsation

$$\omega_0^2 = \frac{ek}{m} = \frac{e^2}{4\pi\epsilon_0 mR^3}$$

C.1.2.3 La trajectoire dépend des conditions initiales : position M_0 et vecteur vitesse ϖ_0 .

$$\overrightarrow{OM} = \overrightarrow{OM}_0 \cos(\omega_0 t) + (\sqrt[4]{\omega}_0 / \omega_0) \sin(\omega_0 t)$$

C.1.3 R = 10^{-10} m; rayon plus grand que celui prévu par Rutherford mais il correspond au rayon d'un atome.

C.1.4
$$\pi = -e$$
 a e_r ; $p_x = p_0 .cos(\omega_0 t)$ $p_y = p_0 sin(\omega_0 t)$ avec $p_0 = -e$.a

C.2/ Champ électromagnétique dans le vide

C.2.1
$$\overrightarrow{Maxwell} - \overrightarrow{Ampère} : \overrightarrow{rot}(\overrightarrow{B}) = \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$$

Conservation du flux div \overrightarrow{B} = 0

Maxwell – Faraday :
$$\overrightarrow{rot} \stackrel{\rightarrow}{E} = -\frac{\partial \stackrel{\rightarrow}{B}}{\partial t}$$

Maxwell – Gauss div
$$\stackrel{\rightarrow}{E}$$
 = 0

Elle doit vérifier l'équation de propagation, déduite des équations de Maxwell :

Cette équation est vérifiée pour k = 0 /c ; la direction de propagation est celle de l'axe x'x ;

$$\Delta \stackrel{\rightarrow}{E} - 1/c^2 \frac{\partial^2 \stackrel{\rightarrow}{E}}{\partial t^2} = \stackrel{\rightarrow}{0} \text{ avec } \mu_0 \ \epsilon_0 c^2 = 1$$
soit
$$\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2} = 0$$
se propageant dans le sens de $\stackrel{\rightarrow}{e_x}$: $\stackrel{\rightarrow}{k}$ = k $\stackrel{\rightarrow}{e_x}$

C'est une onde monochromatique rectiligne progressive

C.2.2.2

$$\vec{B} = (E_0/c) \cos(\omega t - kx) \stackrel{\rightarrow}{e_z} ; (\vec{E}, \vec{B}, \vec{B})$$
 forment un trièdre direct.

La direction de R correspond à la direction de propagation de l'énergie ; le flux de R à travers une surface S correspond à l'énergie transmise par unité de temps à travers cette surface. Son unité est le watt par m² (W.m⁻²).

$$\overrightarrow{R} = \varepsilon_0 c \, \mathsf{E}_0^2 \, \cos^2(\omega \, \mathsf{t} - \mathsf{kx}) \quad \overrightarrow{\mathbf{e}}_{\mathsf{x}} \quad ; \quad <\overrightarrow{R} >$$

$$= (\varepsilon_0 c \, \mathsf{E}_0^2 / 2) \, \overrightarrow{\mathbf{e}}_{\mathsf{x}}$$

C.3/ Champ électromagnétique rayonné par un dipôle

C.3.1 Le dipôle est assimilé à deux charges (+q, -q) situé à une distance d. Le courant qui circule entre les deux charges est équivalent à un élément de courant ℓ . dq/dt $\mathbf{e}_z = \mathrm{dp/dt} \ \mathbf{e}_z$. Tout plan passant par l'axe Oz est un plan de symétrie pour le système.

Le champ électrique est dans ce plan (E_r et E_θ) et le champ \vec{B} créé est perpendiculaire à ce plan (B_{ω}).

C.3.2 Ce n'est pas une onde plane puisque l'amplitude des champs dépend de r et de θ . On peut la qualifier de quasi-plane car \vec{E} et \vec{B} sont perpendiculaires, transversaux et le rapport de leur amplitude est E/B=c.

C.3.3
$$\vec{R} = \frac{1}{16\pi^{2}\epsilon_{0}c^{3}} \frac{\omega^{4} \sin^{2}\theta \cdot p_{0}^{2}}{r^{2}} \cos^{2}[\omega (t - r/c)]$$

$$\vec{e}_{r} < \vec{R} > = \frac{1}{32\pi^{2}\epsilon_{0}c^{3}} \frac{\omega^{4} \sin^{2}\theta \cdot p_{0}^{2}}{r^{2}} \vec{e}_{r}$$

C.3.4 La puissance moyenne rayonnée est :

$$P_{R} = \iint_{S} \langle \overrightarrow{R} \rangle . \overrightarrow{e_{r}} r^{2} \sin \theta d\phi d\theta \text{ soit}$$

$$P_{R} = \frac{\omega^{4} . p_{0}^{2}}{12\pi\epsilon_{0} c^{3}}$$

C.4/ Ondes mécaniques

alors vérifiée.

- **C.4.1.** y(0,t) est la perturbation de la corde en x = 0, elle représente le signal au niveau de l'excitateur.
- C.4.2.1. Cette équation est l'équation de D'Alembert à une dimension (équation d'onde).
- **C.4.2.2.** $c = \frac{T^{1/2}}{\mu^{1/2}} = \left(\frac{MLT^{-2}}{ML^{-1}}\right)^{1/2} = LT^{-1}$, c est donc homogène à une vitesse, il s'agit de la vitesse de propagation de l'onde y(x,t).
- **C.4.2.3.** Soit $y(x,t) = f\left(t \frac{x}{c}\right)$, en opérant le changement de variable $u = t \frac{x}{c}$, on peut réécrire l'équation d'onde, sachant que : $\frac{\partial}{\partial t} = \frac{\partial}{\partial u} \frac{\partial u}{\partial t} = \frac{\partial}{\partial u}$ et $\frac{\partial}{\partial x} = \frac{\partial}{\partial u} \frac{\partial u}{\partial x} = -\frac{1}{c} \frac{\partial}{\partial u}$.

 Ainsi, on obtient : $\frac{\partial^2}{\partial t^2} \frac{T}{u} \frac{\partial^2}{\partial x^2} = \frac{\partial^2}{\partial t^2} c^2 \frac{\partial^2}{\partial x^2} = \frac{\partial^2}{\partial u^2} c^2 \frac{1}{c^2} \frac{\partial^2}{\partial u^2} = 0$, donc quel que soit f(u) l'équation d'onde est
- **C.4.2.4.** De la même façon en posant $u = t + \frac{x}{c}$ alors $\frac{\partial}{\partial t} = \frac{\partial}{\partial u}$ et $\frac{\partial}{\partial x} = \frac{1}{c} \frac{\partial}{\partial u}$ et l'on retrouve la même équation d'onde quel que soit g(u).