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1- Introduction

Particle physics relies on quantum field theory which is
commonly expressed in Lagrangian formalism.

Reminder :

- In classical mechanics the particle’s motion is described by
the Lagrange equations:

dfoL) o _,
dt| o6, ) og

where (; are the generalized coordinates of the particles and

g, :% their time derivatives.

- The Lagrangian of the system is definedas L=T -V
where T and V are the kinetic and potential energies. ,



2- Lagrangian formalism

From discrete to continuous variables ¥ (X,1):
- the Lagrangian is replaced by a Lagrangian density

(ql’ql’ ) (W’a W’Xﬂ)

- the normalization of the Lagrangian density is such that :
L= [d*x¢

- the Euler-Lagrange equations read :
oL 8L
8ﬂ =0
o(ow)) ow
Starting from the Lagrangian density one defines an action :

N Id4XL (l/j’a/lw’ Xﬂ)




2- Lagrangian formalism

Noether’s theorem : each invariance of the theory (Lagrangian
density) implies the conservation of a charge and a current

For instance the variation of the action S'=S (w) expressed
in terms of the transformed fields ¥ ' under a local
transformation depending on the parameter «(X) reads :

5S =5"-S :jd“xa(x)@ﬂJ”
The least action principle leads to the continuity equation :
GﬂJ #=0

describing the conservation of the charge Q = Id?’XJ °



2- Lagrangian formalism

The physics of a given type of particle is described through a
Lagrangian density involving quantum fields which can be seen
as creation/annihilation operators of particles in the standard
of 2nd quantization.

For example the free movement of a spinless particle is
described by the following Lagrangian density:

L free aﬂWTﬁﬂW o mszl/j
. . oL oL
Applying the Euler-Lagrange equations éﬂ N | 0
o(ov')) ow

we get the K-G equation : 0 ( ) (—m°y) =0




3- Gauge invariance

The invariance of the theory (Lagrangian) under a
- space translation

- time translation

- space rotation

—

is associated with the conservation of P, E, J

Those symmetries are “space-time” like. The theory can be also
invariant under internal symmetries. For instance for an
electron described by a field ¥  the Lagrangian is invariant
under the global phase transform :

w — ey

The transforms U (a) = @' constitute the Abelian group U (1)
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3- Gauge invariance

e The conserved quantity in that case corresponds to the electrical
charge.

e Starting from an infinitesimal transform v — (1+ ia) W
one derives the real form of the conserved current...

e Physically the existence of a symmetry implies that a quantity is
not observable (e.g. the invariance under a space translation
means that it is not possible to fix an absolute position in space
which can be therefore chosen arbitrarily).

e Inthe U (1) case the quantity ¢ is called a global gauge.

In the particle physics Standard Model the fundamental interactions
are built on symmetry principles, those of the local gauge transforms.
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3- Gauge invariance

Local gauge invariance of the free particles Lagrangian :
« under the local transform ¥ —=>€“ ¥ where the «
parameter depends on X* the Lagrangian

t 72
L free :a,})” aﬂ';”—m a4
Is not invariant :

v —>e“y =0y > (6“ +1 (8“05))w

v se "y =0y - (8“ —1 (8”05))WT

v'y >y'ly ©

ow'o"y — (aﬂ .y (aﬂog))wT (aﬂ i (aﬂa))w
=0,y'0"y —i(0"a)y' o'y +yi(0"a)y...



3- Gauge invariance

Local gauge invariance of the free particles Lagrangian :
e To force the invariance one introduces a covariant derivative :

Dy = ((’9” — ieA”)w

where A” is the gauge field which should transform as :

A" —> A” +E8”a
e

In order to balance the transform of the derivative terms

. . (1
D"w = | 0“ +1| P )—1eA” —1e| —¢
oo ifora) i —ie e
. . (1
Dy | 0% —i(0% )+ ieA” +ie| =6%a | '
o[ il e el oy
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3- Gauge invariance

Local gauge invariance of the free particles Lagrangian :
e The Lagrangian is modified into :
L int — DyWTDﬂW o mZWTW
_ t 2 1
=0,y 0y —My y
+ie[AﬂwT8“w —G#WTA"w}
+eZA#wTA“w
e Forcing the U(1) invariance introduces a new vector field, the

gauge field, which couples to the particles through 2 different
types of vertices. Generic coupling term: —JﬂA"

e This gauge field is associated to the photon, responsible for the
electromagnetic interaction. .



4- U(7) gauge field

To really associate the gauge field of the U(1) symmetry to the photon
it is mandatory to include the dynamics of the photon itself:

* Propagation equation in vacuum : DA =0

e Photon interaction with its sources (Maxwell equations) :

o, F" ="

with the field tensor: F*" =0“A" —0" A”
e Reminder : classical fields
A* = (V,A)

For= 0o — 07y =2 —(V) v =€)
Fy=0A -0A=V,A -V A= 'Jk(ﬁ |§)
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4- U(7) gauge field

« Propagation equations of the interacting field :
o,F"=J"
U
0,(0“A -0"A") ="
A -0"(0,A")=1" = DA ="

0
in Lorentz
gauge

e Dynamic term for the photon
L freez_ipva oL _aizo
4" “lo(e,A)) oA

« No massterm (!): mZAﬂA“ not invariant under U(1) transform
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4- U(7) gauge field

Summary :

Particle physics is described by local gauge theories

Each invariance is associated with gauge field(s)

Gauge fields couple to the particles

For spinless particles the Q.E.D. Lagrangian density reads :

L spin-0 — 5ﬂWT5ﬂW o mZWTl/j
+i€|:Aﬂl//T@ﬂw — (%WTA“w] + ezAﬂl/lTAﬂW

1 y
— FuF”

What about %:-spin particles description?
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