Chapter 1 Particles...

How do we classify them? How do they interact? How do we detect them?

http://www.ipnl.in2p3.fr/cours/marteau/PP2012-2013/

1. Fundamental particles

- 1. Leptons
- 2. Quarks
- 3. Hadrons

2. Hadron spectroscopy

- 1. Isospin symmetry
- 2. Basics of group theory. The SU(N) group.
- 3. The quark model

3. Fundamental interactions

- 1. Range and propagators
- 2. Electro-weak interaction
- 3. Strong interaction

1. Particules fondamentales

- 1. Leptons
- 2. Quarks
- 3. Hadrons

2. Spectroscopie hadronique

- 1. La symétrie d'isospin
- 2. Rappel de théorie des groupes. Le groupe SU(N).
- 3. Le modèle des quarks.

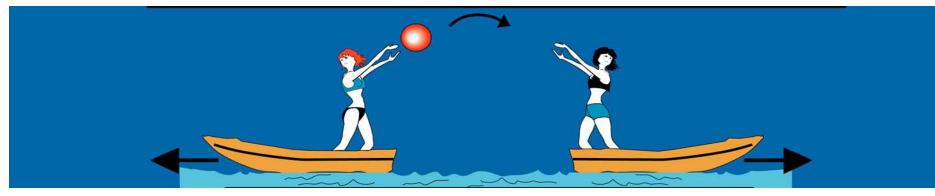
3. Interactions fondamentales

- 1. Portée d'une interaction et propagateurs.
- 2. Interaction électro-faible.
- 3. Interaction forte.

1- Fundamental particles

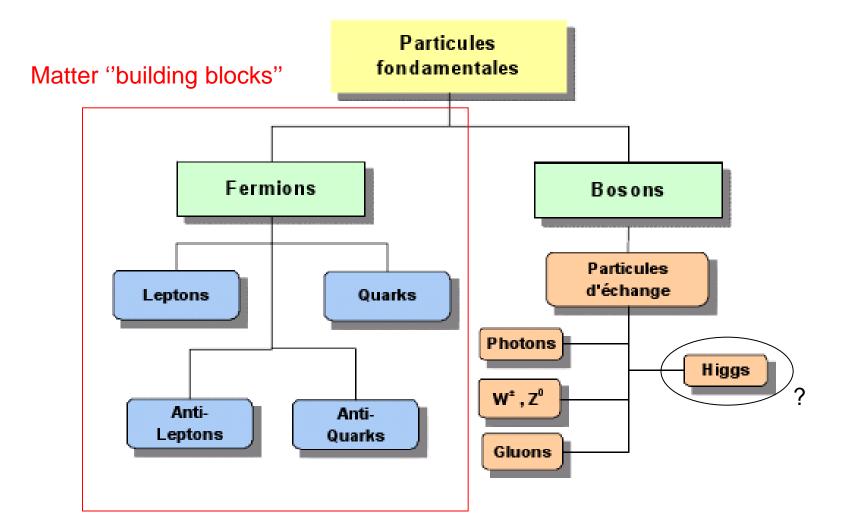
General features:

- Fundamental particles can not be separated into smaller components (elementary particles such as: electron, photon, quarks...)
- Some particles are composite ones (protons and neutrons are composed of 3 quarks, pions of 1 quark and 1 antiquark...)
- There are 2 ways of classifying the particles:

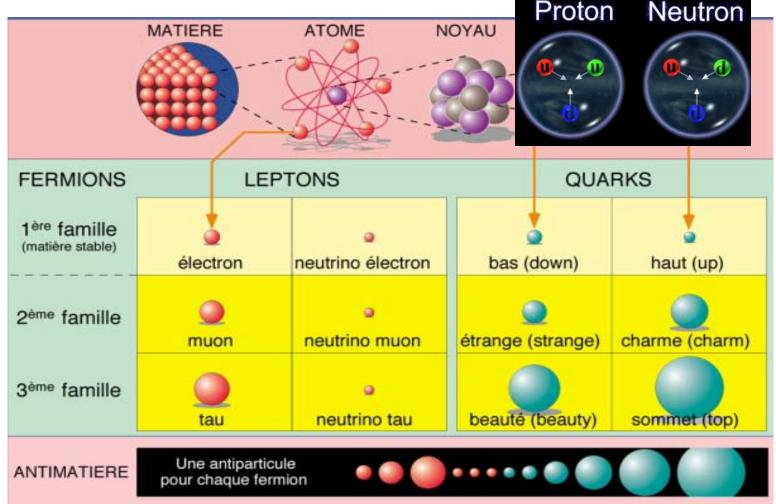

 Following the spin-statistics
 Fermions (1/2 integer spin, Fermi-Dirac statistics) Vs
 Bosons (integer spin, Bose-Einstein statistics)
 Following the interaction(s) they are sensitive to...

1- Fundamental particles

There are 4 fundamental interactions:


- Strong interaction (e.g. nuclei structure)
- Electromagnetic interaction (e.g. atomic physics, light, μ-wave...)
- Weak interaction (e.g. β radioactivity phenomena)
- Gravity (neglected at energy scales well below 10¹⁹GeV)

In quantum field theory any interaction is modeled by an intermediate particle exchange (gauge bosons).


1- Fundamental particles

A simplified scheme

1- Fundamental particles

They are (up-to-now) the most elementary particles known and constitute the building blocks of atoms

Leptons:

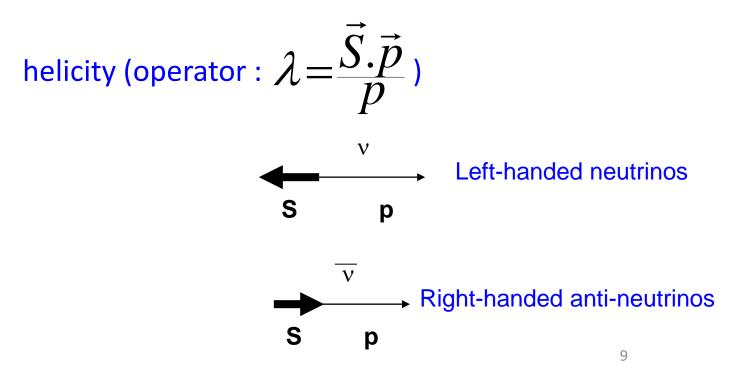
- Are insensitive to strong interaction
- Carry integer electric charges ($n \times 1.610^{-19}$ C with $n \in \aleph$)
- Carry a "weak" charge ie can be associated in weak interaction doublets
- Are organized into 3 families : electron, muon, tau

$$\begin{array}{c} Leptons (spin \frac{1}{2}) \\ Q = 0 \\ Q = -1 \end{array} \begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$$

• Muons and taus are "heavy" and unstable copies of electrons

Leptonic number: global symmetry associated to leptons implying that 3 numbers are conserved additively in the interactions:

•
$$L_e = +1$$
 (e⁻ and v_e) / $L_e = -1$ (e⁺ and v_e) / $L_e = 0$ for others


•
$$L_{\mu} = +1 (\mu^{-} \text{ and } \nu_{\mu}) / L_{\mu} = -1 (\mu^{+} \text{ and } \nu_{\mu}) / L_{\mu} = 0 \text{ for others}$$

•
$$L_{\tau} = +1 (\tau^{-} \text{ and } v_{\tau}) / L_{\tau} = -1 (\tau^{+} \text{ and } v_{\tau}) / L_{\tau} = 0 \text{ for others}$$

• Reactions example:

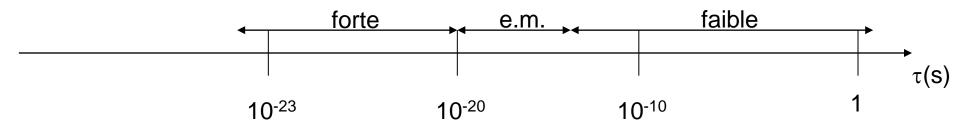
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \quad (L_{\mu}:0=-1+(+1))$$

$$\mu^{-} \rightarrow e^{-} + \bar{\nu}_{e} + \nu_{\mu} \quad (L_{e}:0=+1+(-1)/L_{\mu}:+1=+1)$$

Neutrinos are only sensitive to weak interactions and have a fixed

1.1 Leptons

Leptons summary

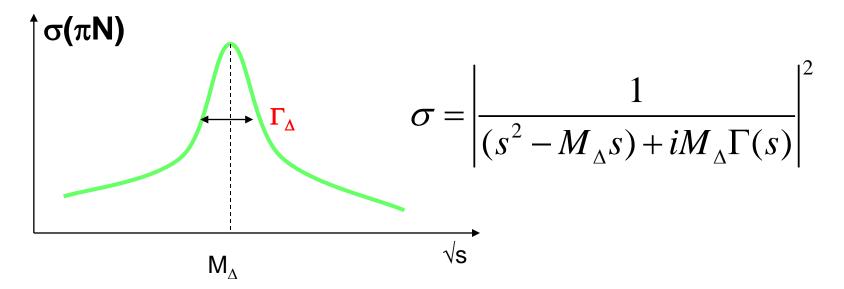

Leptons $S, C, \widetilde{B}, T, I, I_3 = 0$								
	$M~({ m MeV})$	τ	Q	(L_e, L_μ, L_τ)	$(I^W, I^W_3)_{R,L}$	J^{PC}		
е	0.51099892(4)	$>4.6 imes10^{26}$ ans	-1	(1,0,0)	$(0,0)_R, (\frac{1}{2},-\frac{1}{2})_L$	$\frac{1}{2}$		
V e	$< 3 imes 10^{-6}$	$>$ 300 $m_{ u}$ s/eV	0	(1,0,0)	$(0,0)_R, (\frac{1}{2}, \frac{1}{2})_L$	$\frac{\tilde{1}}{2}$		
μ	105.658369(9)	$2.197030(4) \times 10^{-6}$ s	-1	(0, 1, 0)	$(0,0)_R, (\frac{1}{2},-\frac{1}{2})_L$	$\frac{\overline{1}}{2}$		
ν_{μ}	< 0.19	$> 15.4~m_{ u}~$ s/eV	0	(0, 1, 0)	$(0,0)_R, (\frac{1}{2},\frac{1}{2})_L$	$\frac{1}{2}$		
au	$1776.99^{(+29)}_{(-26)}$	$290.6(11) imes 10^{-15}$ s	-1	(0,0,1)	$(0,0)_R, (\frac{1}{2},-\frac{1}{2})_L$	$\frac{1}{2}$		
ν_{τ}	< 18.2	—	0	(0, 0, 1)	$(0,0)_R, (\frac{1}{2},\frac{1}{2})_L$	$\frac{1}{2}$		

Notations:

- I^w and I_3^w are related to the weak isospin
- J^{PC} = Spin^{Parity C-Parity}

What about stability and lifetime? Almost all particles (but e.g. electrons, protons) are unstable and decay with a time which depends on the type of interaction and the available phase space

Hierarchy:


Width (energy scale):

$$\Delta M = \Gamma = \frac{1}{\tau} \quad (\text{MeV})$$

1.1 Leptons

Strong decays and resonances :

$$\Delta \rightarrow \pi N$$
 ($\Gamma = 115 \text{ MeV}$)
 $\rho \rightarrow \pi \pi$ ($\Gamma = 150 \text{ MeV}$)

$$\tau \sim 1/100(MeV) * \left[200(MeV.fm)/3.10^{8}.10^{15}(fm.s^{-1}) \right]$$

 $\tau \sim 10^{-23}s$

Quarks:

- Are sensitive to strong interaction (they are the fundamental components of nuclear matter)
- Carry fractional electric charges (e.g. Qu=2/3 × e)
- Carry a "weak" charge ie can be associated in weak interaction doublets
- Carry also a "colored charge" and are associated in triplets of the strong interaction
- Are organized into 3 families (as the leptons are, probable link?) which are ~identical but for the masses

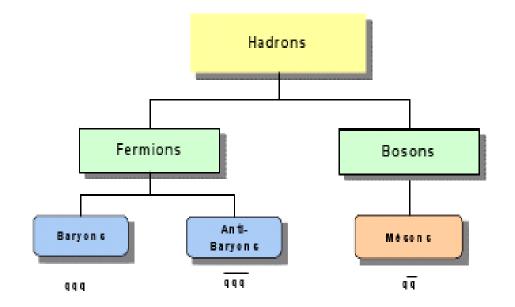
Quarks						
$Q = \frac{2}{3}$ $Q = -\frac{1}{3}$	$\begin{pmatrix} u(\mathrm{up})\\ d(\mathrm{down}) \end{pmatrix}$	$\begin{pmatrix} c(\text{charme})\\ s(\text{étrange}) \end{pmatrix}$	$\begin{pmatrix} t(top) \\ b(bottom) \end{pmatrix}$			

1.2 Quarks

Quarks are confined : they can not be observed in a free state (extreme case: quark-gluon plasma)

Global quantum numbers are associated with the quark content of a compound : strangeness (s), charm (c), beauty (b), top (t)...

These numbers are conserved in all but the weak interactions


Quarks $L_{e}, L_{\mu}, L_{\tau} = 0, I_{3} = Q - \frac{1}{2} \left(B + S + C + \widetilde{B} + T \right)$							
	M (MeV)	Q	В	(S,C,\widetilde{B},T)	$(I^W, I^W_3)_{R,L}$	$I^{\mathcal{G}}$	J^{PC}
u d s c b t	$1.5 - 4$ $4 - 8$ $80 - 130$ $1150 - 1350$ $4100 - 4400 (\overline{MS})$ $4600 - 4900 (1S)$ $174.3(51)$	$-\frac{2}{3}$ $-\frac{1}{3}$ $-\frac{2}{3}$ $-\frac{1}{3}$ $-\frac{1}{3}$ $\frac{2}{3}$	1313131313	(0,0,0,0)(0,0,0,0)(-1,0,0,0)(0,1,0,0)(0,0,-1,0)(0,0,0,1)	$(0,0)_{R}, (\frac{1}{2},\frac{1}{2})_{L}$ $(0,0)_{R}, (\frac{1}{2},-\frac{1}{2})_{L}$ $(0,0)_{R}, (\frac{1}{2},-\frac{1}{2})_{L}$ $(0,0)_{R}, (\frac{1}{2},\frac{1}{2})_{L}$ $(0,0)_{R}, (\frac{1}{2},-\frac{1}{2})_{L}$ $(0,0)_{R}, (\frac{1}{2},\frac{1}{2})_{L}$ $(0,0)_{R}, (\frac{1}{2},\frac{1}{2})_{L}$	1 2 1 2 0 0 0 0 0	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

14

1.3 Hadrons

Hadrons are the compound particles sensitive to the strong interaction. They are divided into 2 categories:

- Baryons : made of 3 quarks $(q_1q_2q_3)$
- Mesons : made of 1 quark and 1 anti-quark $(q_1 \overline{q_2})$

Examples:

Hadron	s	
p	proton	
n	neutron	
π^+, π^0, π^+	pions	
ρ ⁺ , ρ ⁰ , ρ ⁻	mésons $ ho$	
Λ	lambda	 _
K^+, K^0, \bar{K}^0, K^-	mésons K	 -

1.3 Hadrons

- Hadrons carry integer electric charge
- They interact weakly
- We associate a global quantum number (baryonic number), conserved additively in all reactions and defined as :
 B = 1 for baryons / B = -1 for anti-baryons / B = 0 others

Why do we observe only the baryon/meson combinations only?

Why can we observe such particles as the Δ ++ = (u \uparrow u \uparrow u \uparrow) forbidden by the Fermi statistics?

Because of the colored charge : the only allowed (physics) states correspond to "white" combinations of quarks and antiquarks.

1.3 Hadrons

3 basic colors: **R G B** for the quarks and their "anti"-colors for the anti-quarks : **R G B**

White combinations correspond to :

- **RGB** or **RGB** in equal proportions
- **RR GG BB** in equal proportions (where "proportions" means the proper anti-symmetrization)

Example: "white proton" p (u u d)

2. Hadron spectroscopy

Introduction:

- 1st observation : invariance of the strong interactions w.r.t. the electric charge (*p*-*p*, *p*-*n*, *n*-*n* are equivalent for the strong interactions: underlying symmetry?)
- 2nd observation : masses identity

$$m_p = 938.3 \,(\text{MeV})$$
 $m_N = 939.1 \,(\text{MeV})$
 $m_{\pi^{\pm}} = 139.6 \,(\text{MeV})$ $m_{\pi^0} = 135.0 \,(\text{MeV})$
 $m_{\kappa^{\pm}} = 493.7 \,(\text{MeV})$ $m_{\kappa^0} = 497.7 \,(\text{MeV})$

Those masses would have been probably degenerate in absence of e.m. interactions (symmetry violation analog to the Zeeman effect)

2.1 Jsospin symmetry

Generalization to multiplets :

	Multiplet $J^P = 0^-$			Multiplet J^P =	= 1-
Mésons	Mass(MeV)	Nom	Mésons	Mass(MeV)	Nom
π^+,π^0,π^-	139.6, 135.0, 139.6	pion	$ ho^+, ho^0, ho^-$	768.5	rho
K^+, K^0	493.7, 497.7	kaon	ω	781.9	oméga
$ar{K}^0, K^-$	497.7, 493.7	antikaon	K^{*+}, K^{*0}	891.6, 896.1	kaon étoile
η	547.5	eta	\bar{K}^{*0}, K^{*-}	896.1, 891.6	antikaon étoile
η'	957.8	eta prime	ϕ	1019.4	phi

	Multiplet $J^P = \frac{1}{2}^+$		Multiplet $J^P = \frac{3}{2}^+$			
Baryons	Mass(MeV)	Nom	Baryons	Mass(MeV)	Nom	
p, n	938.3, 939.6	nucléon	$\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}$	≈ 1232	delta	
Λ	1115.7	lambda	$\Sigma^{*+}, \Sigma^{*0}, \Sigma^{*-}$	1382.8, 1383.7, 1387.2	sigma étoile	
$\Sigma^+, \Sigma^0, \Sigma^-$	1189.4, 1192.6, 1197.4	sigma	Ξ^{*0}, Ξ^{*-}	1530.8, 1535.0	xi étoile	
Ξ^0, Ξ^-	1314.9, 1321.3	xi	Ω^{-}	1672.5	oméga	

2.1 Jsospin symmetry

Conclusion: hadrons can be classified as multiplets of ~equal masses particles differing by their electrical charge :

singulets :

doublets :

triplets :

quadruplets :

$$\begin{pmatrix} \eta, \eta', \omega, \phi, \Lambda, \Omega^{-} \\ \begin{pmatrix} p \\ n \end{pmatrix}, \begin{pmatrix} K^{+} \\ K^{0} \end{pmatrix}, \begin{pmatrix} \bar{K}^{0} \\ K^{-} \end{pmatrix}, \begin{pmatrix} K^{*+} \\ K^{*0} \end{pmatrix}, \begin{pmatrix} \bar{K}^{*0} \\ K^{*-} \end{pmatrix}, \begin{pmatrix} \Xi^{0} \\ \Xi^{-} \end{pmatrix}$$

$$\begin{pmatrix} \pi^{+} \\ \pi^{0} \\ \pi^{-} \end{pmatrix}, \begin{pmatrix} \rho^{+} \\ \rho^{0} \\ \rho^{-} \end{pmatrix}, \begin{pmatrix} \Sigma^{+} \\ \Sigma^{0} \\ \Sigma^{-} \end{pmatrix}, \begin{pmatrix} \Sigma^{*+} \\ \Sigma^{*0} \\ \Sigma^{*-} \end{pmatrix}$$

$$\begin{pmatrix} \Delta^{++} \\ \Delta^{+} \\ \Delta^{0} \\ \Delta^{-} \end{pmatrix}$$

From the point of view of strong interactions, proton and neutron
 are almost the same particle. One creates an abstract space in which
 strong interactions are invariant under rotations...

2.1 Jsospin symmetry

The conserved quantity (Noether's theorem) is called isospin. Isospin treatment follows the kinetic moment one's and relies on the group theory (SU(2) representation) :

- In the isospin space one introduces an operator $\vec{I} = (I_1, I_2, I_3)$ which commutation rules read $\begin{bmatrix} I_i, I_j \end{bmatrix} = \varepsilon_{ijk} I_k$
- The eigenstates $|I, I_3\rangle$ of the observables I^2, I_3 are such that :

 $I^{2} | I, I_{3} \rangle = I(I+1) | I, I_{3} \rangle$ $I_{3} | I, I_{3} \rangle = I_{3} | I, I_{3} \rangle$

• A multiplet has 2I + 1 eigenstates $I_3 = -I, ..., +I$ ("2I+1"-plet)

2.1 Jsospin symmetry

Within such representations one has the following multiplets:

$$\begin{aligned} |\Delta^{++}\rangle &= \left|\frac{3}{2}, \frac{3}{2}\right\rangle \\ |p\rangle &= \left|I = \frac{1}{2}, I_3 = \frac{1}{2}\right\rangle = \left|\frac{1}{2}, \frac{1}{2}\right\rangle \\ |\Delta^{+}\rangle &= \left|\frac{3}{2}, \frac{1}{2}\right\rangle \\ |n\rangle &= \left|\frac{1}{2}, -\frac{1}{2}\right\rangle, \\ Doublet & |\Delta^{-}\rangle &= \left|\frac{3}{2}, -\frac{3}{2}\right\rangle \end{aligned}$$

Quadruplet

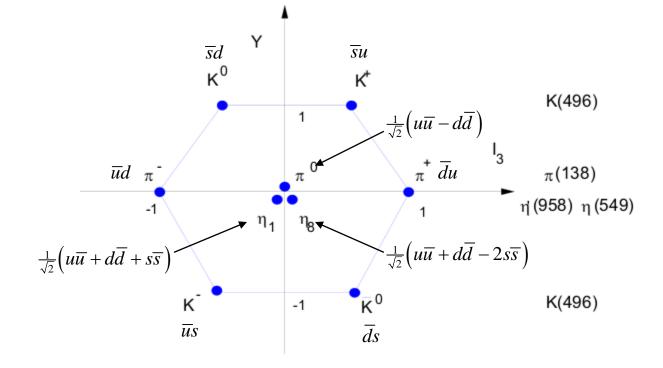
10 01

2.2 Basics of Lie groups

SU(N) groups :

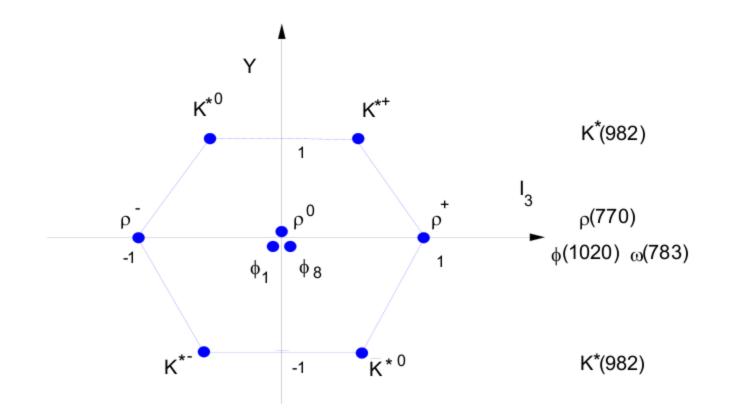
- Group generators : I_k defined such as $U(\alpha_1, \alpha_2, \alpha_3) = e^{-i\alpha_k I_k}$ # of independent generators : $m = n^2 - 1$
- Properties : $I_k^{\dagger} = I_k$ and $Tr(I_k) = 0$
- # of generators simultaneously diagonalizable (rank) : r = n 1
- # of Casimir operators (function of the generators commuting with all of them) : r = n - 1ex. SU(2) : $I^2 = I_1^2 + I_2^2 + I_3^2$
- The fundamental representation is of dimension N : (

 $egin{pmatrix} X_1 \ X_2 \ dots \ X_N \end{pmatrix}$

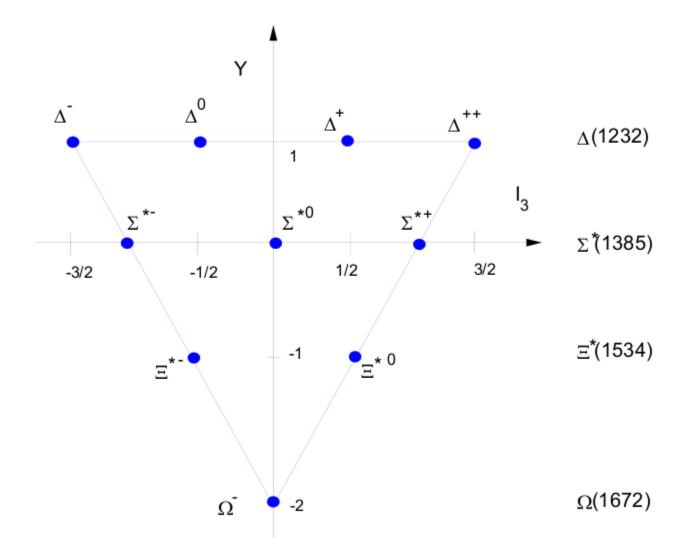

• Structure constants defined by: $\begin{bmatrix} I_i, I_j \end{bmatrix} = f_{ijk}I_k$

2.3 Quarks model

Fundamental representation 3 : Y 1/3 d u 1/2 I_3 -1 1 -1/2 -1/3 -2/3 S Adjoint representation $\overline{3}$: Y -S 2/3 I_3 1/2 -1 1 -1/2 1/3 u d -1/3


2.3 Quarks model

• Pseudo-scalar mesons diagram (octet + singlet): $J^P = 0^-$


2.3 Quarks model

• Pseudo-vector mesons diagram (octet + singlet): same quarks content but // spin : $J^P = 1^-$

2.3 Quarks model

• Just for fun : baryons decuplet

3- Fundamental interactions

• Leptons and quarks interactions are mediated by specific gauge bosons :

strong	gluons	g (8)	M=0	u _B u _R gluon RB		
e.m.	photon γ (1)		M=0	e- mm r		
weak	Z W		M=90 GeV M=81 GeV	ve ve e		
gravitation	graviton	h ^{μν}	?	?		

- Yukawa approach: in 1935 it was proposed a link between the range of an interaction and the mass of the "carrier" quantum.
- Heisenberg inegality :

$$R = c\Delta t \approx \frac{1}{\Delta E} = \frac{1}{m}$$

• Formally (Klein-Gordon equation ie "massive" photon propagation equation): $\Box \psi + m^2 \psi = 0$

For a static spherical potential :

$$\Box \tilde{\psi}(r) + m^2 \tilde{\psi}(r) = 0$$

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \left(\tilde{\psi}(r) \right) \right) + m^2 \tilde{\psi}(r) = 0$$

$$\Rightarrow \tilde{\psi}(r) = \frac{g}{4\pi r} e^{-r/R} \quad \text{where} \quad R = \frac{1}{m}$$

 Historically this approach led to the prediction of an intermediate quantum for the strong interaction of mass close to:

$$m = \frac{1}{R} \sim \frac{1}{\text{few fm}} \sim 100 - 200 \,\text{MeV}$$

- The pion was then discovered (140 MeV) which can be seen as the carrier for the residual strong interaction between nucleons (not quarks) at the scale of the nucleus.
- Its small mass is the manifestation of another symmetry breaking, the chiral symmetry SU(2)_L×SU(2)_R.
- This simple model gives an idea of the range of an interaction and the link with the intermediate properties.

• The Fourier transform of the Yukawa potential is given by :

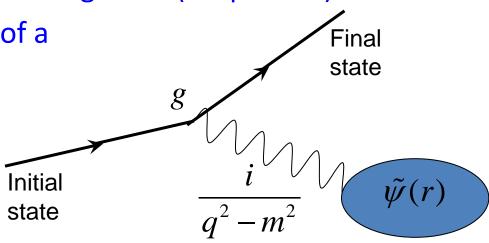
$$\tilde{\psi}(r) \propto \frac{e^{-r/R}}{r}$$
 where $R = \frac{1}{m}$
 $\Rightarrow \tilde{\psi}(q) \propto \frac{1}{\vec{q}^2 + m^2 - i\varepsilon}$

- The quantity obtained is called the propagator.
- Using the Green function formalism for the Klein-Gordon equation: $(\Box + m^2)\psi(x) = 0$ where $x = x^{\mu} = (x^0, \vec{x})$

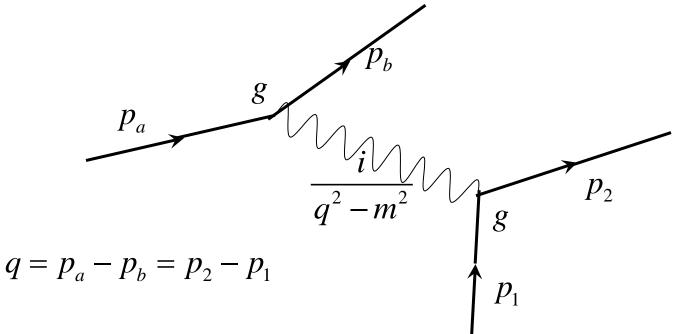
$$\Rightarrow (q^2 - m^2)\psi(q) = 0 \quad \text{with} \quad q = q^{\mu} = (q^0, \vec{q})$$
$$\Rightarrow (q^2 - m^2)G(q) = \delta^4(q)$$

$$\Rightarrow G(q) = \frac{\delta^4(q)}{q^2 - m^2} \Rightarrow \text{Propagator} = \frac{i}{q^2 - m^2}$$

• What is the role of the integration constant g?


$$\tilde{\psi}(r) = \frac{g}{4\pi r} e^{-r/R}$$

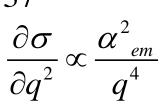
• In Electromagnetism we have the standard Coulomb potential :

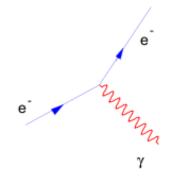

$$\tilde{\psi}(r) = \frac{Q}{4\pi r}$$

corresponding to a vanishing mass (for photon) or infinite range

• Q and g play the role of a coupling constant for the interaction

• Basic Feynman diagram :

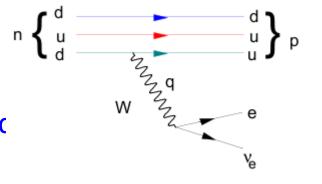

• The amplitude of the process writes:


$$g^{2} A(p_{a}, p_{b}) \frac{1}{q^{2} - m^{2}} A(p_{1}, p_{2}) \delta^{4}(p_{a} + p_{1} - p_{b} - p_{2})$$

3.2- Electroweak interactions

ELECTROMAGNETIC INTERACTIONS

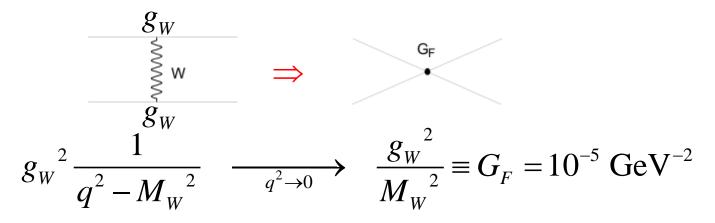
- Coupling constant : $\alpha_{em} = \frac{e^2}{4\pi\hbar c} = \frac{1}{137}$
- Example : Rutherford cross-section $\frac{\partial \sigma}{\partial a^2} \propto \frac{\alpha^2_{em}}{a^4}$



- Typical cross-section $\sim 10^{-33} \text{ m}^2$
- $\sim 10^{-20}$ s Typical interaction times
- Photon (γ) exchange, infinite range

3.2- Electroweak interactions

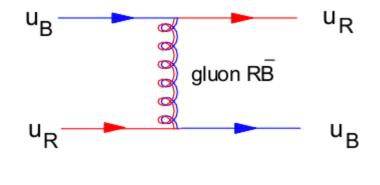
WEAK INTERACTIONS


- Coupling constant : $\alpha_{Fermi} = \frac{G_F m_P^2}{4\pi} \approx 10^{-6}$
- Example : neutron β-decay
- Weak interactions do not conserve the c
- Typical cross-section $\sim 10^{-44} \text{ m}^2$
- Typical interaction times $\sim 10^{-10}$ s
- Weak bosons exchange, finite range

3.2- Electroweak interactions

WEAK INTERACTIONS (cont'd)

- Typical range : $M \sim 80 90 \text{ GeV} \Rightarrow R \sim 10^{-18} \text{ m}$
- Due to the large mass of the exchanged bosons the weak interactions can often be considered point-like

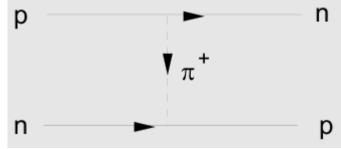

• Weinberg angle (electroweak theory) :

$$\alpha_{W} = \frac{g_{W}^{2}}{4\pi} = \frac{e^{2}}{4\pi \sin^{2} \theta_{W}} = \frac{1}{29} \quad (\sin^{2} \theta_{W} = 0.22)$$

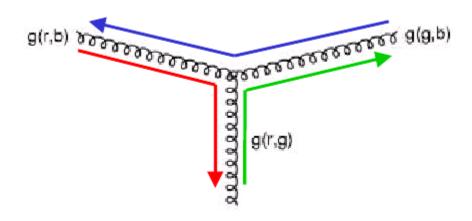
3.3- Strong interactions

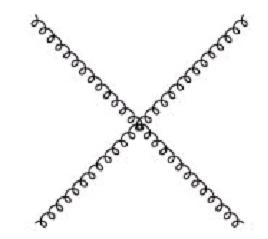
Features

- Coupling constant : $\alpha_s \sim 1$
- Carry a colored charge

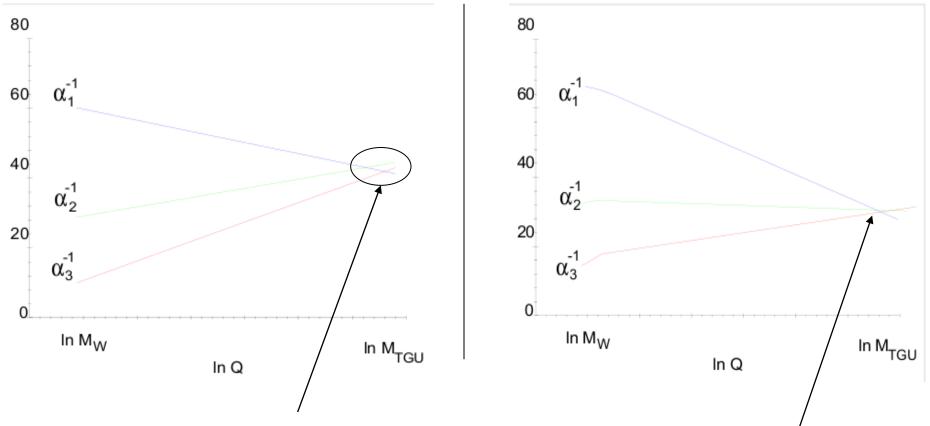


- Typical cross-section $\sim 10^{-30} \text{ m}^2$
- Typical interaction times $\sim 10^{-23}$ s
- Gluons (g) exchange, effective finite range due to the confinement $R \sim 10^{-15} \,\mathrm{m}$. Asymptotic freedom.


3.3- Strong interactions


Features (cont'd)

• Residual interaction (at the nuclei scale) :


• ∃ couplings between gluons :

Towards unification ?

• Coupling constants vary with the energy

- At large scales all couplings become nearly equal.
- In some "beyond Standard Model" models (SUSY etc) this occurs!