Particle Physics

Dirac equation: spinors, γ matrices, helicity, chirality

- 1 / Write down a simplified form of the Dirac equation for a spinor $\Psi(t)$ describing a particle of mass m at rest. For the standard Pauli-Dirac representation of the γ matrices, obtain a differential equation for each component ψ_i of the spinor Ψ , and hence write down a general solution for the evolution of Ψ .
- **2** / For the standard Pauli-Dirac representation of the γ matrices, and for an arbitrary pair of spinors Ψ and Φ with components ψ_i et ϕ_i
 - a- Calculate the components of the quadricurrent $\overline{\Psi}\gamma^{\mu}\Phi$ (as a function of ψ_i et ϕ_i).
 - b- For a particle or antiparticle with four-momentum $p^{\mu} = (E, p_x, p_y, p_z)$, show that

$$\overline{u_1}\gamma^{\mu}u_1 = \overline{u_2}\gamma^{\mu}u_2 = \overline{v_1}\gamma^{\mu}v_1 = \overline{v_2}\gamma^{\mu}v_2 = 2p^{\mu}$$

and that

$$\overline{u_1}\gamma^{\mu}u_2 = \overline{u_2}\gamma^{\mu}u_1 = \overline{v_1}\gamma^{\mu}v_2 = \overline{v_2}\gamma^{\mu}v_1 = 0$$

- c- Hence show that the current $j^{\mu} = \overline{\Psi}\gamma^{\mu}\Phi$ corresponding to a general free particle spinor $\Psi(p) = u(p)e^{i(\vec{p}.\vec{r}-Et)}$ or antiparticle spinor $\Psi(p) = v(p)e^{-i(\vec{p}.\vec{r}-Et)}$ is given by $j^{\mu} = 2p^{\mu}$. Write down the particle density and flux represented by j^{μ} , and show that they are consistent.
- **3** / Calculate, in the helicity basis, the positive energy spinor for an electron with momentum $\vec{p} = (p \sin \theta, 0, p \cos \theta)$.
- 4 / Show that $\Lambda_{+} = \frac{p+m}{/}2m$ and $\Lambda_{-} = \frac{-p+m}{/}2m$ are the projectors on positive and negative energy states.
- **5** / Show the completeness relations :

$$\sum_s u(p,s)\overline{u}(p,s) = \not p + m \; , \qquad \sum_s v(p,s)\overline{v}(p,s) = \not p - m \; .$$

- 6 / show that the chirality eigenstates are identical to the helicity eigenstates for a massless spin
- 1/2 particle with energy E
- 7 / Show that $\overline{\Psi}_L \gamma^\mu \Psi_R = \overline{\Psi}_R \gamma^\mu \Psi_L = 0$ and that the current $j^\mu = \overline{\Psi} \gamma^\mu \Psi$ can be written

$$\overline{\Psi}\gamma^{\mu}\Psi = \overline{\Psi}_{L}\gamma^{\mu}\Psi_{L} + \overline{\Psi}_{R}\gamma^{\mu}\Psi_{R}$$

- 8 / In the framework of the Dirac equation, show that:
 - a- $[H, \vec{L}] = -i \vec{\alpha} \times \vec{p}$
 - b- $[H, \vec{\Sigma}] = 2i \vec{\alpha} \times \vec{p}$
 - c- What about $\vec{L} + \vec{\Sigma}/2$? conclusions?