ENS Lyon

Travaux Dirigés de Physique des Particules

Particle physics: elementary constituents, interactions, Feynman diagrams, isospin

Quark content of some mesons 1 and baryons

$\pi^{\rm o} = (u\bar{u} - d\bar{d})/\sqrt{2}$	$\pi^+ = u \bar{d}$	$\pi^- = \bar{u}d$
$K^{\mathrm{o}} = d\bar{s}$	$K^+ = u\bar{s}$	$K^- = \bar{u}s$
$D^+ = c\bar{d}$	$D^0=c\bar{u}$	
p = uud	n = udd	
$\Sigma^{\mathrm{o}} = sud$	$\Sigma^+ = uus$	$\Sigma^- = dds$
$\Xi^{*+} = ssd$	$\Lambda^{\rm o} = sud$	

Exercise #1:

Indicate the family of the neutrino or antineutrino for the following interactions

$$\begin{array}{ll} \pi^+ \longrightarrow \pi^{\mathrm{o}} + e^+ + \nu & \mu^+ \longrightarrow e^+ + \nu + \nu \\ \mu^- \longrightarrow e^- + \nu + \nu & \nu + p \longrightarrow n + e^+ \\ \nu + p \longrightarrow \mu^- + p + \pi^+ \end{array}$$

Exercise #2:

Determine if the following reactions are allowed:

$$\begin{array}{ccc} n \longrightarrow p + \gamma & p \longrightarrow e^+ + \gamma \\ p \longrightarrow \pi^+ + \gamma & \overline{p} + n \longrightarrow \pi^- + \pi^{\rm o} \end{array}$$

Exercise #3:

Among the following reactions indicate:

- 1 / the two forbidden reactions
- **2** / the one not occurring by strong interaction

$$\begin{array}{lll} K^- + p \longrightarrow \overline{K}{}^0 + n & \pi^+ + p \longrightarrow K^+ + \Sigma^+ \\ K^- \longrightarrow \pi^- + \pi^0 & K^- + p \longrightarrow \Sigma^+ + n + \pi^- \\ \overline{K}{}^0 + p \longrightarrow K^- + p + \pi^+ & \overline{p} + p \longrightarrow \pi^+ + \pi^+ + \pi^- + \pi^- + \pi^+ \end{array}$$

¹One can find $\pi^0 \propto u\bar{u} + d\bar{d}$ in the literature with another convention for the isospin multiplets of antiparticles, but the physics results do not depend on this choice of phase.

Exercice 4 :

- 1 / Indicate the interactions involved in each step of the decay of the Σ^+ .
- **2** / Draw a Feynman diagram for each stage of the decay
- **3** / Give the final state seen in the detector

Exercise #5: Pion-nucleon scattering

Let's consider the $\pi N \to \pi N$ scattering, with $\pi = \pi^+, \pi^0, \pi^-$ et N = p, n.

1 / Determine the isospin state of each possible $|\pi N\rangle$ combination.

2 / Give the 6 elastic and 4 charge-exchange possible processes. What kind of interactions are involved ? Draw a Feynman diagram for one of the charge-exchange reactions.

3 / Calculate the ratio of the following cross sections, assuming the I = 3/2 isospin channel is dominant near the Δ resonance:

$$R = \frac{\sigma(\pi^+ n \to \pi^0 p)}{\sigma(\pi^+ n \to \pi^+ n)}$$

Exercise #6: Invariant mass

Consider the decay in flight of a D meson of mass $M = 2 \text{ GeV}/c^2$ into e, ν_e and X, where X is a hadron or a set of hadrons. The D meson has a momentum P = 3 GeV/c. Assume that for a particular decay, the leptons are produced at 90° with respect to \mathbf{P}, ν_e opposite to e^+ , and X forward. Calculate the invariant mass m of X if the positron has a momentum p = 0.25 GeV/c. Explain why the mass of the positron can be neglected. Describe the decay in the rest frame of the D.

Estimate the mass of a particle decaying into two photons of momenta $\mathbf{p}_1 = (0.4, 0.2)$ and $\mathbf{p}_2 = (0.7, -0.2)$ (in GeV/c). Describe the decay in the rest frame.