Chapter 3
¢
Relativigtic propagation equations
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1- AntiparticCes and relativity

Observation of antiparticles :

Interaction of an antiproton in a bubble
chamber: 8 pions are produced. One of

them (positive) decays into a muon and. % %
a muon-neutrino .
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1- AntiparticCes and relativity

Historically:

 Predication of the positron by Dirac (1928)

e Experimental signature by Anderson (1932)

e Theoretical difficulties : “negative energies” =» holes theory

e Matter-antimatter asymmetry

Studying charge-exchange diagram with some basics of 4-vectors:

“=(p°=E=yM, = yMV)

y = \/1_7 andﬂ:%

p2 — p,upﬂ — EZ_ p>2: E2(1_V2): M 2
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1- AntiparticCes and relativity

The charge exchange process is forbidden classically

o pﬂ — p'/J + qﬂ
o q°=(p"-p*)*=2M"-2pp),

E, )} -
— oM {1_ 1-vV j
p J(@-v?)(1-v?)

<0 butg®=m"?

e BetweenE,andE,a vi%cual particle state may be exchanged for
a time less than At < —

. .m
e “E1-E2”:space-like interval between the 2 events

=0’ -G°= qoz(l—v 2) withV : pion velocity
= (A)°-(A%)*= (A)*(1-V?) < 0



1- AntiparticCes and relativity

Off-shell virtual particle exchange :

p’u
g+ .
El /,x" E A
pH
P
M P
m
" g : off-shell

E=V(p?+M2) : nucleon mass shell

/7 E=V(p2+m?2) : pion mass shell
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1- AntiparticCes and relativity

By reversing time order (E2 observed before E1) the 1T should
have been absorbed before emission (causality violation)

L n E1 before E2
E1 /1}{+
P
n
n
t[ E, T~
TH 1 \~\
P Ll

—>emission of TT" antiparticle : TT




2- Klein-Gordon eguation

Introduction :

e Schrodinger equation describes the evolution of a non-
relativistic wavefunction using the canonical quantization :

X - X
E - ihl

applied to the energy definition :
=2

E=F +v(x)
2m

(x t)= (_—hZA +ij( t)

2m



2- Klein-Gordon eguation

Introduction :

e Reminder : covariant formalism

Xt = (x° = ct,X) andx,, = (x° =ct ,—7()

0 Ei:(i,ﬁj andc?“zi:(i ,—ﬁj
“oooxH \ cot oX cot

e 4-dimensional canonical quantization :
. .0 .. =
#=(p°=E,p| - iho* :(Ih—,—lhmj
P (p p) cot

e How to derive a relativistic evolution equation? Following the
same prescription than in the Schrodinger case but with the
relativistic energy definition —

E2 — p2C2+ m2C4




2-1 K-G eguation derivation

Preliminary remark : why not starting from E = \/f)zcz +m<’?
e Time-space asymmetry

e Difficult development of the square root

e But: only positive-energy solutions...

Derivation : canonical quantization applied
p°=p“p, =P - P =mc’
U
62
—hza"@ﬂl/J(X) = mzczl//(x) with 6”6ﬂ =0=

cot®

-A

Finally : (EI+ I’T;lZC jlﬂ(X)=O
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2-1 K-G eguation derivation

Remarks :

The photon (boson) is solution of KG’s propagation equation
(with m=0)

KG allows to describe all (anti-)particles within the same
formalism

Negative energy solutions? Consider a plane wave

@(x) = BEPH0 = ggPs "

2.2
(m+ rr;zc jzﬂ =0=&°=p°c°+m<T’

£ =+E, with E, =/ p’c?+m%’

Y . 5 | n DI €
-MC mcC 11




2-2 ProGabGiligtic interpretation

Reminder :

 In the non-relativistic case the probabilistic interpretation of
wavefunctions reads (continuity equation) :

6’0 +[1.J =0 where
ot

o=y

—

j= (_'hwwj Py Oy -piw )

N

with the integral condition : deX‘¢/(>7,t)‘2 =N =ct

12



2-2 ProGabGiligtic interpretation

In the relativistic case the same procedure can be followed :

0“0 4y (x) +m*cy(x) =0

{w 0“9 W (X) +MPCY P (X) =
Word 4 (X) + Py’ (x) =

= 6”(3#{// —wﬂaﬂw =0

. \h [ . )
- 943, =0 withJ, = %(w 0“y — Yoy )
with the integral charge conservation condition :

din (.0 d .
mcz(w at‘” watwj

and p< or=0

13



2-2 ProGabGiligtic interpretation

Interpretation? The number of particles is not conserved (possible
annihilations) but some charges may be conserved : multiplying p
by the electric charge in the case of a plane wave for instance:

I (P.XF E
{//i (X) — Bie(p. Ept)/h = 0, = i@mgz Bi 2

P, represents the charge density which may be of both signs!

A negative energy particle represents an anti-particle moving in

reverse time order!

> <) <
e (E<0) Te ((-E)>0)
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2-3 Diffusion amplitude

Reminder : transition amplitude (covariant expression) from initial
(i) to final (f) state on the action of a perturbation potential V.

Ty = =i [ d*xg; (V¢ ()

For a charged particle moving in an (e.g. electromagnetic) potential
Al pY o pf +edd ieind” - ihoY +eAH

The KG equation reads therefore :

(aﬂaﬂ + mZ)I,U(X) =-Vi/(X) whereV = _ie(aﬂAﬂ n A”Gﬂ) +0 (92 :

15



2-3 Diffusion amplitude

Amplitude computation :

Ty =-i[d*xg; OV (¢, ()

Ts = -.i:'d“x l,l/j; (X) (—*ie(a A A'ua*,u))wi (X) 3,
==i|d'x(-e)[ ¢ A0 g ~0 ) Ay |
==i[d*x A“(~ie)| o, —d 4 | N
=-i[d*x A,J4

With A#linked to its source through (ava,,) A'(X) = J;
(see later)



2-3 Diffusion amplitude

Starting with Feynman diagrams :

1
T, ==i[dx A,J4 ==i[d xJﬂ(Z)(q jJ(q)
‘]u(l)

7.

Py

2
‘]u()

17



3- Introduction to gauge theory

Particle physics relies on quantum field theory which is
commonly expressed in Lagrangian formalism.

Reminder :

- In classical mechanics the particle’s motion is described by
the Lagrange equations:

d(dL —EZO
at\ dg ) 0q

where ( are the generalized coordinates of the particles and

g = d—i" their time derivatives.

- The Lagrangian of the system is definedas L =T -V
where T and V are the kinetic and potential energies. »



3-1 Lagrangian formalism

From discrete to continuous variables ¢ (X,t) :
- the Lagrangian is replaced by a Lagrangian density

L(Qi ’qi ’t) - 8(40’6#‘,0’)(#)
- the normalization of the Lagrangian density is such that :
L= _[dSXQ

- the Euler-Lagrange equations read :
0 0
W olow) ) ow
M
Starting from the Lagrangian density one defines an action :

S(¢) = jd“xzz(c/j,aﬂc/j,xﬂ)

19



3-1 Lagrangian formalism

Noether’s theorem : each invariance of the theory (Lagrangian
density) implies the conservation of a charge and a current

For instance the variation of the action S'= S((ﬂ ) expressed
in terms of the transformed fields ¢ ' under a local
transformation depending on the parameter a(X) reads :

dS=S'-S= j d*xa(x)d,J”
The least action principle leads to the continuity equation :
ONJ” =0

describing the conservation of the charge Q = jd3XJ °

20



3-1 Lagrangian formalism

The physics of a given type of particle is described through a
Lagrangian density involving quantum fields which can be seen
as creation/annihilation operators of particles in the standard
of 2"d quantization.

For example the free movement of a spinless particle is
described by the following Lagrangian density:

gfree = aﬂ‘/’Taﬂw - m2¢/ Tw

9 L
-—— =0
6(6,140*)j v

we get the K-G equation : 0, (0”{,0) —(-myY)=0

Applying the Euler-Lagrange equations Gﬂ(

21



3-2 Gauge invariance

The invariance of the theory (Lagrangian) under a
- space translation

- time translation

- Space rotation

—_

is associated with the conservation of P, E, J

Those symmetries are “space-time” like. The theory can be
also invariant under internal symmetries. For instance for an
electron described by a field ¢ the Lagrangian is invariant
under the global phase transform :

Y- ey

The transforms U (a) = & constitute the Abelian group U (1)

22




3-2 Gauge invariance

e The conserved quantity in that case corresponds to the electrical
charge.

e Starting from an infinitesimal transform ¢ — (1+ia) 7
one derives the real form of the conserved current...

e Physically the existence of a symmetry implies that a quantity is
not observable (e.g. the invariance under a space translation
means that it is not possible to fix an absolute position in space
which can be therefore chosen arbitrarily).

* Inthe U (1) case the quantity ¢ is called a global gauge.

In the particle physics Standard Model the fundamental interactions
are built on symmetry principles, those of the local gauge transforms.

23




3-2 Gauge invariance

Local gauge invariance of the free particles Lagrangian :
e under the local transform ¢ — €° ¢  where the &

parameter depends on X” the Lagrangian
eree = aﬂ‘/’Taﬂ‘ﬂ - mZ‘/’ T‘//

IS not invariant :
y -y =y - (0" +i(0"a))y
p' eyt =yt - (07 -i(0%a))y’
Yy -yy ©
o ' y (9 -i(0"a))y' (0" +i(0"a))y
=0 y'o"y —i(0“a)y'oy +yli(0“a)y... ®

24



3-2 Gauge invariance

Local gauge invariance of the free particles Lagrangian :
e To force the invariance one introduces a covariant derivative :

Dy = (8% —ieA )y
whereA” is thgauge fieldvhich should transform as :
AY A +Ea”a
e
In order to balance the transform of the derivaterens

u . NVIRAE.

Dwa[a +|M 1eA: |%j¢/
Hyyy T H_ila“ TeAX + i E T
DXy H[a |M+|eA +|e£/ea"§jjw

25



3-2 Gauge invariance

Local gauge invariance of the free particles Lagrangian :
e The Lagrangian is modified into :

L?int = Du‘/jTDﬂw - meTl//
_ t 2,1
=0, 0"y -myy
+ie| Ag'ory -0 ' Ny |
+e AW AY
e Forcing the U(1) invariance introduces a new vector field, the

gauge field, which couples to the particles through 2 different
types of vertices. Generic coupling term: —JNA”

e This gauge field is associated to the photon, responsible for the
electromagnetic interaction.

26



3-8 U(7) gauge field

To really associate the gauge field of the U(1) symmetry to the photon
it is mandatory to include the dynamics of the photon itself:

e Propagation equation in vacuunoA” =0

 Photon interaction with its sources (Maxwell ecoiasi)

a,Fm =1"

with the field tensor :F* =0“A” — 9" A
e Reminder : classical fields
AX = (v, A)
a( A) - —
F, =0, -0, == -(0) v =(€)

F; :aiAj _ajA =LA U A ‘gijk(DxB)k = & By

27



3-8 U(7) gauge field

 Propagation equations of the interacting field :
J0F" =7
U
0, (0" A —0"A")=J"
oA -9 (9,A)=3" = oA =J"

0
in Lorentz
gauge

 Dynamic term for the photon
L?free:—leF”” d, 0¥ —Q:O
4 0(0,A)) oA

« No massterm (!) mZAﬂA” not invarianderU(1) transform

28



3-8 U(7) gauge field

Summary :

Particle physics is described lmgal gauge theories
Each invariance Is associated withuge field(s)

Gauge fieldsoupleto the particles

For spinless particles the Q.E.Cagrangian densityeads :

gspin—o = awaaﬂW - mzlﬂ T{/I
+ie[ Ao y -0 ﬂl//TA”l//:| +e’A Ny
1

_Z FIUVF'UV

What abouts-spin particles description?

29




4- The Dirac equation

Introduction (non-relativistic case) : the Pauluation

e Preliminary remark on Pauli matrices :

0 1 0 - 1 O
+~ls o 2 o) o
if O, andO, are operators commuting with Bieili matrices then
(66,)(6.6,)=06,0,+i5 (0,0,
« Applying the previous relation t® leads to :
(o)

2m

(6:P)(aP) = (5.ﬁ>)2 “P?—H =

30



4.1 The non-relativigtic cage

To describe the particemotion in an E.M. field the covariant

derivative prescription leads to :
. . 0
o L pheen e, 170, — 170, +#eA

P> PpteA

The Schédinger equation
oY, Pz
1h— (X, 1) =—/ (Xt

P (X,t) me( )
can be rewritten as

79 (x.1) = (5'(P2:A)) W(x,t)-eAW (X,1)

31



4.1 The non-relativigtic cage

Using the Pauli matrices relation :
L a\\2 o 2

(0.(P+eA)) =(P+eA) +ig.((P+eA)




4.1 The non-relativigtic cage

 Finally the Pauli equation reads
- —\2
P+eA ~ eh ;o=\ ~

2m 2m

L0y
17 P (X,1)

where the wavefunction is a 2D object.
 The action of thepin operatois explicit.

« N.B. developingP +eA leads toB . @e¢s the complete
equation through the substitution—, L +2S withS=214g

33



4-2 The Dirac equation

 (Generalization to the relativistic case : the stgrpoint is always
EZ — p>2c2+ m2C4
which is the only covariant form for the canonigabntization :

:(ihat)2 —(5.|5)2J¢/(7<,t) = My (X,t)

170, +ind.0||ind, ~ina D | = iy

o Let's take auxiliary variables :

WO =y

W :%['hat ~ing 0 |y

34



4-2 The Dirac equation

 The following system
[ino, —ing 0
JL il

70, +iho 0

IS equivalent to

1 — 2
2 — 1

{ inog-ingly=mp . {¢ =@ 4@

-ind, x —ihagd¢ =my

XY= w(Z) _w(l)

 In a matrix form this equation reads :

ind,  ing (¢j:m(¢j
-ing.0 -ind, )\ x X

35




4-2 The Dirac equation

e Gamma matrices definition :

0 - -g 0

 Basic properties :
{y'.v}=yy +yy =20"
(yo)2 =1 and(y‘)2 =-1
vy =yt

e« “Slash notation: &= aﬂyﬂ

36



4-2 The Dirac equation

Reminder (Pauli matrices properties) :
¢ {O-i’a-j} =20, [Ji ’Uj:| = A¢g, 0,
* 0,0, =0 +1§,0,
- (0G,)(66,)=0,0,+i5(0,x0,)
- Ford unit vectord( #g0)y eigenfunction &fd
with eigenvaluex 1ly .

o -iga )= oot 3J-ian )

37



4-2 The Dirac equation

« Defining a 4D solution to the equation : A
” m |
X) | ¥s
the previous matrix equation writes : '
ino, ing.0\(@)_ (#
-ing.0 -ind, )\ x X
g

in(y°0,+y'0,)w =y ie.
(ihy"aﬂ - m)t// =0 Dirac Equation

e In details : Z Z (ih(y”)abaﬂ—rrﬁab);ab:o

1©=01,2,3b=1,2,3,4

38




4-2 The Dirac equation

Adjoint representation.
 As usual it is obtained through theonjugaté equation :

(iny*a, ~m)y =0=g'(iny*"d, +m) =0
e Using the gamma matrices property”’ = y°y*y° one gets
Y’ (ihyoy”yoéﬂ + myoyo) =0
W'y (iny'yD,+my®) =0 < &y°)
gﬁ(ihy”éﬂ + m) =0 where =¢')°

39



4-2 The Dirac equation

Adjoint representation.
« @ ="y is theadjoint spinor

 The conjugate equations read therefore :
(ihy"aﬂ —m)w =0
and
tﬁ(ihy"éﬂ + m) =0
 Reminder : spinless case (K.G.)
0“0 g +m’y =0
and

0“0 4" +nfy =0

40



4-2 The Dirac equation

Quadri-current.

Formal derivation possibilities :
- directly from the fundamental and adjoint repreagons or

- from the Lagrangian expressiahgauge invariance (looking
for the current coupling to the gauge field)

Question : is the Born probabilistic interpretatmossible in the
Dirac case (i.e. Is the charge density positivieeganterpreted as a
probability density?).

Reminder : not the case in the spinless case wlegyatine energy
solutions and negative charge density should haea b
i — i (p.X—Et)/h — 2
re-interpretatedy/(x) = Ne = p=2|N| x OEO
>0 or U<

41



4-2 The Dirac equation

Quadri-current.
e Direct derivation :

(ihy”aﬂ —m)c,a =0
zﬁ(ihy"éy +m) =0
gy (0,+0,)w=0=0,(@yy)=

[]

« Conserved current 3# = C(tﬁy”l,ﬁ)

e Conserved charge densitp:= ‘]/ Py Y = QUTJ/ yow

l

= P=PY= 2 Y. >0



4-2 The Dirac equation

Quadri-current (derived from gauge invariance).
« Lagrangian of free particles {7, :tﬁ(iy"aﬂ - m)w

 U(1) invariance=» use of covariant derivatives :
& =@(iy*D,—m)y
:(ﬁ(iyﬂ(aﬂ +ieA, ) - m)(ﬂ
=@(iy'o,~m)y
_ewAﬂ

[1J#
where the interaction term appears on the fordp A"

as for spinless particles.

43



4-3 Dirac gpinors

Free particle solutions.

By analogy with the non-relativistic case we mayeva general
spind4 wavefunction in terms of factorized solutions :

w ux(planewavé uxexp( |p/1X ) U X eXpGIpX )—U @ E[ p.X- Et
whereu is a 4-componentspinor.

 The explicit expression of the spinor is more eagdguced from
the Hamiltonian formalism of the Dirac equation.

e The wavefunction is split into two 2-components sps

Y= 4 where I_hat¢ _I?J'QX: my
X —-1hd Y —1hdJg =my

44



4-3 Dirac gpinors

 The equations system may be written in terms ofrgamatrices
or equivalently :

i70.¢ —iha.dy =mg
-ind, x —ihg.Og =my

Ve (—ih(ﬁ.ﬁ) +,8m)w

o J/
Vv

HD

0 o 1 0
wherea, = angs =
g 0 0 -1

 The eigenfunctions are solutions of :
Hou=(a.p+Am)u=Eu

45



4-3 Dirac gpinors

Assuming the spinau into two 2-components spinoug andug

The systemleadsto: ( u, )
- a generic form fou:u=| g.p

- a relation betweek andp :
(6.9)(F.p)u, = P’u, = (E-m)(E+mu, = E=+E

46




4-3 Dirac spinors

Summary

' negative probabilities
Klein-Gordon equation |

| hegative energies

- positive (only) probabillities
Dirac equation=>» -

| nhegative energies

Dirac’s historical interpretation : tHeacuum state consists of all
negative-energy states filled with electrons. ThalPprinciple
forbids any positive-energy electron from fallimga these lower
energy states. 47



4-3 Dirac spinors

The‘vacuum (so-called Dirac sea) ¢

has now infinite negative charge ' Pasitive - energy
. o continuum £2 m

and energy but all observations ref

sent finite fluctuations w.r.t. the

vacuum.

Negative- energy
continuum £€-m

A ‘hol€ in the Dirac sea, I.e. the absence of a negatieeggn

electron is equivalent to the presence of a p@skiivergy

positively charged version of the electron, nanaepositron.
energy of 'hole' :(-Eneg) — positive ener

charge of 'hole' =(¢,) - positive charge "



4-3 Dirac spinors

What about solutions to the Klein-Gordon equatioospns not
affected by Pauli principle)?

Interpretation through Feynmarprescription (1962) :

negative-energy particle solutions propagating nacl in time=
positive-energy antiparticle solutions propagafmgvard in time

=T ———— Scattering f,
cenfres

In NROQM To be added in RQOM

49




4-3 Dirac gpinors

Consequence of the Feynman prescription :

Potential absorbs
r*m pair at f, n" proceeds into
\ the future
n‘l-
T arrives -
from the past Potential creates

** 1 pair at A

50




4-3 Dirac gpinors

Summary
 Positive-energy solutions : ( P A
YA =u A pe™ u (P Of gp
\E+m" )
 Negative-energy solutions : -
g gy | 4 g.p X(S)\
YA =V (p)e™ ve(p) O] E+m
N S
with the spin-up/down 2D spi s 1 dg y©&? 0
pin-up/down 2D spinogs Yy~ = N andg y 1

« Warning on spin direction : negative-energy solutiath spin+ =
positive-energy solution with spin-

51



4-3 Dirac gpinors

 Dirac equation imp-space :

(v*p, ~m)u(p) =0
(P, +m)v(p) =0
e Adjoint spinors (same procedure as in x-space) :
a(p)(yp,—m)=0
v(p)(y“p,+m)=0

e Ortho-normalization relations :

T (U (p) =0 VI (PIVT(P) =0
a®(pv(p)=0 v (pu*(p)=0

52



4-4 Spin and Energy projectors

Some useful relations :

2, u®(p)u®(p)=(p+m)

s=1,2

> VO (pWVE(p)=(p-m)

s=1,2

 ‘Energy projectors :

+m

/\+:(p2 )suchas’\+u:u ang,v=
m

/\_:( g )such ad\ v=v anfl u=
m

AZ=A, andA\, +A_=1

53



4-4 Spin and Energy projectors

e Spin projectors. The projection is done along tlog@agation

direction of the particlehglicity operator) chosen as th# 8xis :

p=pe =P
Iy
s=1
4 1 )\
)
\E+m
[ F.p
V(S=1)(p) - N E+m

-4

o, O

0 Jgj_

A
E 1
-1

[0
)2
) [

)L




4-4 Spin and Energy projectors

( \ (gl )
. S:2u(s’:2)(p) =N (E)) andv'®™® (p )= %(2)

ﬂ(o) )

\E+m\/) .o\

 The spinors are eigenstatesafwith eigenvalues’s

1) 1
Su®(p)=+—u®(p) fors=
U (p) > (p) {2

V.p.=—1/2
e » Left-handed

S P

V.p.=+
_»p—. Right-handed
S P

55



4-4 Spin and Energy projectors

Case of massless fermions :

RGN YY) P 4
gp 0 Jlug Uy (.p)u, = Eug

one has two solutionsu; =u, oru; =-u,

Dirac equation decouples into two equations forspinhors :

({. ?)a): -Ew () with E = £
(6.p)n=+En ()
- positive-energy solution for (1) => (5. |3) w=—-w

describes a neutrino of energyand negative helicity => left
- negative-energy solution for (1) 5.p) w=+w

describes an antineutrino of enegnd positive helicity

=> rightv 56




4-4 Spin and Energy projectors

Helicity projector :
o (Case of massless fermions (ll) :
V V
(1) = {_L and (2) = {_R
I/L
* Defining the matrix : )
0 1 Vi =0
- fisr)

1 O | ys =1
one uses the following projectors ohtor R states to generate the
electron-neutrino coupling term (V-A theory of waakeractions) :

1
‘]Iu :l)ZieyﬂE(l_ y5)¢/ve

Vs :iyoyyzysz(

57



4-6 Charge conjugation operator

A %-spin particle in an E.M. field follows the usuak&r equation :
(19, ~eA,)=my =0
What is the analog for an anti-particle describga I&C-conjugate

spinor? [y"(iaﬂ+eAﬂ)—m]¢/C -0

Following basic developments[:yﬂ(iaﬂ -eA,)-m ]éﬂ 0

= _y"k(—iaﬂ—eAﬂ)—m_

0
0

w
_ 1%
Defining C such that :—(Cyo)yﬂ* = y”(CyO) one gets

[y"(iaﬂ +@°y/) —m](CyOz//*) =0i.ely. Cyy

58



4-6 Charge conjugation operator

In Dirac representation th@conjugation operator is given by :

Y.=CYy = C=iyy’K=C™

Application :

o), = e ) =i ) L e

-0.p0, (s) .
E+m je[lpx]

E+m

|
7~ X\
m e
+ | S
S |.
ol
N
N
N
m|_|
=
ol
[
7~ N\

—o,x(8) —g,x(3)
7.0 (1) | | o
=| E+m” e[lpx] = —V(S)( p)e['px] — _l//( )(s’)
¥ (s)
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Summary

Relativistic propagation equations derived fromrggalefinition
law => Klein-Gordon (bosons) and Dirac (fermions)

Gauge invariance imposed to the theory => existehcenserved
currents coupled to gauge fields (e.g. photon&Mj

From classical to quantum field theory : fields eperators

Lagrangian formalism widely used.

60



