Chapter 3

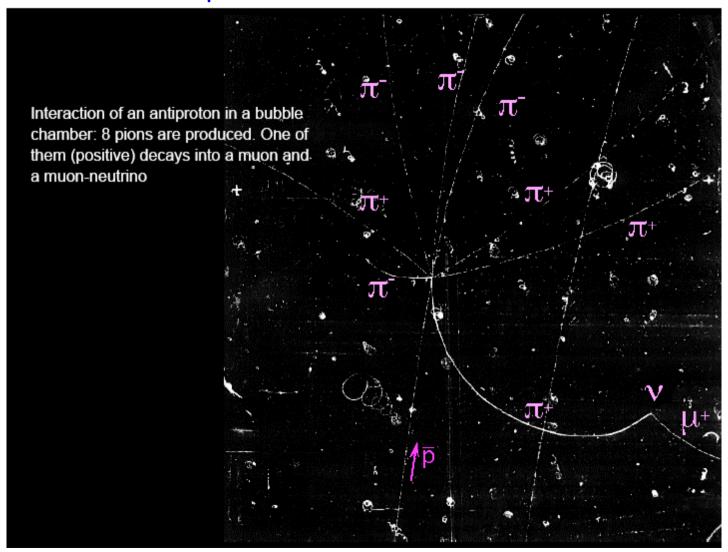
Relativistic propagation equations

Outline/Plan

- 1. Antiparticles and relativity
- 2. Klein-Gordon equation
 - 1. KG equation derivation
 - 2. Probabilistic interpretation
 - 3. Diffusion amplitude
- 3. Introduction to gauge theory
 - 1. Lagrangian formalism
 - 2. Gauge invariance
 - 3. U(1) gauge field
- 4. The Dirac equation
 - 1. The non relativistic case
 - 2. The Dirac equation
 - 3. Dirac spinors
 - 4. Spin and energy projectors
 - 5. Charge conjugation

- 1. Antiparticules et relativité
- 2. Equation de Klein-Gordon
 - 1. Dérivation de l'équation de KG
 - 2. Interprétation probabiliste
 - 3. Amplitude de diffusion
- 3. Introduction aux théories de jauge
 - 1. Formalisme Lagrangien
 - 2. Invariance de jauge
 - 3. Champ de jauge U(1)
- 4. L'équation de Dirac
 - 1. Le cas non-relativiste
 - 2. L'équation de Dirac
 - 3. Spineurs de Dirac
 - 4. Projecteurs de spin/énergie
 - 5. Conjugaison de charge

Observation of antiparticles:

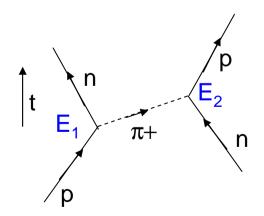


Historically:

- Predication of the positron by Dirac (1928)
- Experimental signature by Anderson (1932)
- Theoretical difficulties: "negative energies"

 holes theory
- Matter-antimatter asymmetry

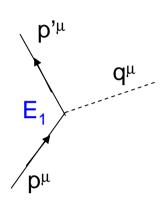
Studying charge-exchange diagram with some basics of 4-vectors:



$$p^{\mu} = (p^{0} = E = \gamma M, \vec{p} = \gamma M \vec{v})$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^{2}}} \text{ and } \beta = \frac{v}{c}$$

$$p^{2} = p^{\mu} p_{\mu} = E^{2} - \vec{p}^{2} = E^{2}(1 - v^{2}) = M^{2}$$



The charge exchange process is forbidden classically
$$p^{\mu} = p^{'\mu} + q^{\mu}$$

$$q^{\mu} = (p^{\mu} - p^{'\mu})^2 = 2M^2 - 2p^{\mu}p'_{\mu}$$

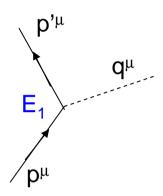
$$= 2M^2 \left(1 - \frac{1 - \vec{v}.\vec{v}}{\sqrt{(1 - v^2)(1 - v^{'2})}}\right)$$

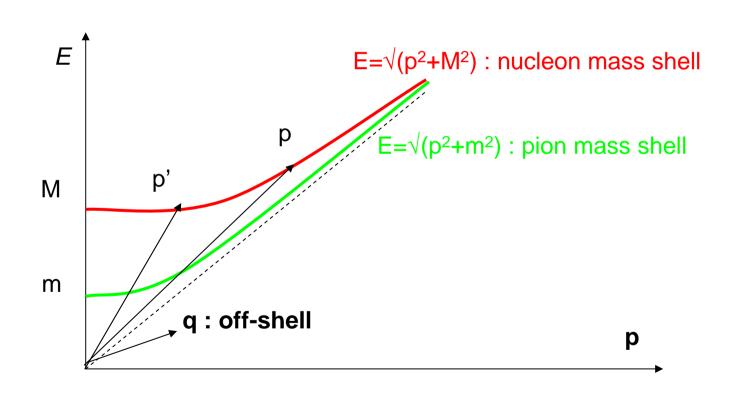
$$\leq 0 \text{ but } q^2 = m^2 ?$$

- Between E₁ and E₂ a virtual particle state may be exchanged for a time less than $\Delta t \leq \frac{h}{t}$
- "E1 E2": space-like interval between the 2 events $q^2 = q_0^2 - \vec{q}^2 = q_0^2 (1 - V^2)$ with V: pion velocity

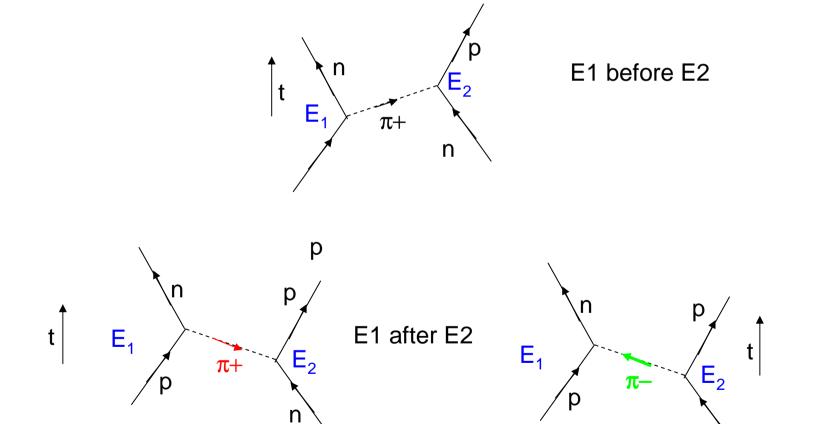
$$\Rightarrow (\Delta t)^2 - (\Delta \vec{x})^2 = (\Delta t)^2 (1 - V^2) < 0$$

Off-shell virtual particle exchange:





By reversing time order (E2 observed before E1) the π^+ should have been absorbed before emission (causality violation)



 \Rightarrow emission of π^+ antiparticle : π^-

2- Klein-Gordon equation

Introduction:

 Schrödinger equation describes the evolution of a nonrelativistic wavefunction using the canonical quantization :

$$\vec{x} \rightarrow \vec{x}$$

$$\vec{p} \rightarrow -i\hbar \vec{\nabla}$$

$$E \rightarrow i\hbar \frac{\partial}{\partial t}$$

applied to the energy definition:

$$E = \frac{\vec{p}^2}{2m} + V(\vec{x})$$

$$\Rightarrow i\hbar \frac{\partial \psi}{\partial t}(\vec{x}, t) = \left(\frac{-\hbar^2}{2m}\Delta + V\right)\psi(\vec{x}, t)$$

2- Klein-Gordon equation

Introduction:

Reminder: covariant formalism

$$x^{\mu} \equiv \left(x^{0} = ct, \vec{x}\right) \text{ and } x_{\mu} \equiv \left(x^{0} = ct, -\vec{x}\right)$$

$$\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{c\partial t}, \vec{\nabla}\right) \text{ and } \partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}} = \left(\frac{\partial}{c\partial t}, -\vec{\nabla}\right)$$

4-dimensional canonical quantization :

$$p^{\mu} \equiv \left(p^{0} = E, \vec{p}\right) \rightarrow i\hbar\partial^{\mu} = \left(i\hbar\frac{\partial}{c\partial t}, -i\hbar\vec{\nabla}\right)$$

• How to derive a relativistic evolution equation? Following the same prescription than in the Schrödinger case but with the relativistic energy definition $E^2 = \vec{p}^2 c^2 + m^2 c^4$

2-1 K-G equation derivation

Preliminary remark : why not starting from $E = \sqrt{\vec{p}^2c^2 + m^2c^4}$?

- Time-space asymmetry
- Difficult development of the square root
- But : only positive-energy solutions...

Derivation: canonical quantization applied

$$p^{2} = p^{\mu} p_{\mu} = p_{0}^{2} - \vec{p}^{2} = m^{2} c^{2}$$

$$-\hbar^2 \partial^{\mu} \partial_{\mu} \psi(x) = m^2 c^2 \psi(x) \text{ with } \partial^{\mu} \partial_{\mu} \equiv \Box = \frac{\partial^2}{c^2 \partial t^2} - \Delta$$

Finally:
$$\left(\Box + \frac{m^2 c^2}{\hbar^2}\right) \psi(x) = 0$$

2-1 K-G equation derivation

Remarks:

- The photon (boson) is solution of KG's propagation equation (with m=0)
- KG allows to describe all (anti-)particles within the same formalism
- Negative energy solutions? Consider a plane wave

$$\psi(x) = Be^{i(\vec{p}.\vec{x}-\varepsilon t)/\hbar} = Be^{ip^{\mu}x_{\mu}/\hbar}$$

$$\left(\Box + \frac{m^{2}c^{2}}{\hbar^{2}}\right)\psi = 0 \Rightarrow \varepsilon^{2} = \vec{p}^{2}c^{2} + m^{2}c^{4}$$

$$\varepsilon = \pm E_{p} \text{ with } E_{p} = \sqrt{\vec{p}^{2}c^{2} + m^{2}c^{4}}$$

11

2-2 Probabilistic interpretation

Reminder:

 In the non-relativistic case the probabilistic interpretation of wavefunctions reads (continuity equation):

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0 \text{ where}$$

$$\begin{cases} \rho = \psi \psi^* \\ \vec{J} = \Re \left(\frac{-i\hbar}{m} \psi^* \vec{\nabla} \psi \right) = \frac{-i\hbar}{2m} (\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*) \end{cases}$$

with the integral condition : $\int d^3x |\psi(\vec{x},t)|^2 = N = ct$

2-2 Probabilistic interpretation

In the relativistic case the same procedure can be followed:

$$\partial^{\mu}\partial_{\mu}\psi(x) + m^{2}c^{2}\psi(x) = 0$$

$$\Rightarrow \begin{cases} \psi^{*}\partial^{\mu}\partial_{\mu}\psi(x) + m^{2}c^{2}\psi^{*}\psi(x) = 0 \\ \psi\partial^{\mu}\partial_{\mu}\psi^{*}(x) + m^{2}c^{2}\psi\psi^{*}(x) = 0 \end{cases}$$

$$\Rightarrow \psi^{*}\partial^{\mu}\partial_{\mu}\psi - \psi\partial^{\mu}\partial_{\mu}\psi^{*} = 0$$

$$\Leftrightarrow \partial^{\mu}J_{\mu} = 0 \text{ with } J_{\mu} = \frac{i\hbar}{2m} (\psi^{*}\partial^{\mu}\psi - \psi\partial^{\mu}\psi^{*})$$

with the integral charge conservation condition:

$$\int d^3x \rho(x) = N = ct \text{ where } \rho(x) = \frac{i\hbar}{2mc^2} \left(\psi^* \frac{\partial}{\partial t} \psi - \psi \frac{\partial}{\partial t} \psi^* \right)$$
and $\rho \le \text{ or } \ge 0$

2-2 Probabilistic interpretation

Interpretation? The number of particles is not conserved (possible annihilations) but some charges may be conserved: multiplying ρ by the electric charge in the case of a plane wave for instance:

$$\psi_{\pm}(x) = B_{\pm}e^{i(\vec{p}.\vec{x}\mp E_{p}t)/\hbar} \Rightarrow \rho_{\pm} = \pm e\frac{E_{p}}{mc^{2}}|B_{\pm}|^{2}$$

 ρ_+ represents the charge density which may be of both signs!

A negative energy particle represents an anti-particle moving in reverse time order!

$$\pi$$
+ (E<0) π - ((-E)>0)

2-3 Diffusion amplitude

Reminder: transition amplitude (covariant expression) from initial

(i) to final (f) state on the action of a perturbation potential V.

$$T_{fi} = -i \int d^4 x \, \psi_f^*(x) V(x) \psi_i(x)$$

For a charged particle moving in an (e.g. electromagnetic) potential A^{μ} : $p^{\mu} \rightarrow p^{\mu} + eA^{\mu}$ ie $i\hbar\partial^{\mu} \rightarrow i\hbar\partial^{\mu} + eA^{\mu}$

The KG equation reads therefore:

$$\left(\partial^{\mu}\partial_{\mu} + m^{2}\right)\psi(x) = -V\psi(x) \text{ where } V = -ie\left(\partial_{\mu}A^{\mu} + A^{\mu}\partial_{\mu}\right) + o(e^{2})$$

2-3 Diffusion amplitude

Amplitude computation:

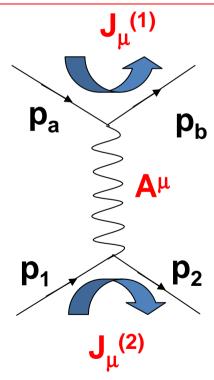
$$\begin{split} T_{fi} &= -i \int d^4 x \, \psi_f^*(x) V(x) \psi_i(x) \\ T_{fi} &= -i \int d^4 x \, \psi_f^*(x) \Big(-i e \Big(\partial_\mu A^\mu + A^\mu \partial_\mu \Big) \Big) \psi_i(x) \\ &= -i \int d^4 x \, \Big(-i e \Big) \Big[\psi_f^* A^\mu \partial_\mu \psi_i - \partial_\mu \psi_f^* A^\mu \psi_i \, \Big] \\ &= -i \int d^4 x \, A^\mu \, \Big(-i e \Big) \Big[\psi_f^* \partial_\mu \psi_i - \partial_\mu \psi_f^* \psi_i \, \Big] \\ &= -i \int d^4 x \, A_\mu J_{fi}^\mu \end{split}$$

With A^{μ} linked to its source through $\left(\partial^{\nu}\partial_{\nu}\right)A^{\mu}(x)=J^{\mu}_{_{(2)}}$ (see later)

2-3 Diffusion amplitude

Starting with Feynman diagrams:

$$T_{fi} = -i \int d^4 x \, A_{\mu} J^{\mu}_{(1)} = -i \int d^4 x \, J_{\mu(2)} \left(\frac{-1}{q^2} \right) J^{\mu}_{(1)}$$



3- Introduction to gauge theory

 Particle physics relies on quantum field theory which is commonly expressed in Lagrangian formalism.

Reminder:

- In classical mechanics the particle's motion is described by the Lagrange equations:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$$

where q_i are the generalized coordinates of the particles and $\dot{q}_i = \frac{dq_i}{dt}$ their time derivatives.

- The Lagrangian of the system is defined as L = T - V where T and V are the kinetic and potential energies.

3-1 Lagrangian formalism

- From discrete to continuous variables $\psi(\vec{x},t)$:
 - the Lagrangian is replaced by a Lagrangian density

$$L(q_i,\dot{q}_i,t) \rightarrow \mathcal{L}(\psi,\partial_{\mu}\psi,x_{\mu})$$

- the normalization of the Lagrangian density is such that:

$$L = \int d^3x \, \mathcal{Q}$$

- the Euler-Lagrange equations read:

$$\partial_{\mu} \left(\frac{\partial \mathcal{Q}}{\partial (\partial_{\mu} \psi)} \right) - \frac{\partial \mathcal{Q}}{\partial \psi} = 0$$

Starting from the Lagrangian density one defines an action :

$$S(\psi) = \int d^4x \, \mathcal{Q}(\psi, \partial_{\mu}\psi, x_{\mu})$$

3-1 Lagrangian formalism

- Noether's theorem : each invariance of the theory (Lagrangian density) implies the conservation of a charge and a current
- For instance the variation of the action $S' = S(\psi')$ expressed in terms of the transformed fields ψ' under a local transformation depending on the parameter $\alpha(x)$ reads :

$$\delta S = S' - S = \int d^4 x \, \alpha(x) \, \partial_{\mu} J^{\mu}$$

The least action principle leads to the continuity equation :

$$\partial_{\mu}J^{\mu} = 0$$

describing the conservation of the charge $Q = \int d^3x J^0$

3-1 Lagrangian formalism

- The physics of a given type of particle is described through a Lagrangian density involving quantum fields which can be seen as creation/annihilation operators of particles in the standard of 2nd quantization.
- For example the free movement of a spinless particle is described by the following Lagrangian density:

$$\mathcal{L}_{free} = \partial_{\mu} \psi^{\dagger} \partial^{\mu} \psi - m^2 \psi^{\dagger} \psi$$

Applying the Euler-Lagrange equations $\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \psi^{\dagger} \right)} \right) - \frac{\partial \mathcal{L}}{\partial \psi^{\dagger}} = 0$

we get the K-G equation :
$$\partial_{\mu} (\partial^{\mu} \psi) - (-m^2 \psi) = 0$$

- The invariance of the theory (Lagrangian) under a
 - space translation
 - time translation
 - space rotation

is associated with the conservation of \vec{p} , E, \vec{J}

• Those symmetries are "space-time" like. The theory can be also invariant under internal symmetries. For instance for an electron described by a field ψ the Lagrangian is invariant under the global phase transform :

$$\psi \rightarrow e^{i\alpha} \psi$$

The transforms $U(\alpha) = e^{i\alpha}$ constitute the Abelian group U(1)

- The conserved quantity in that case corresponds to the electrical charge.
- Starting from an infinitesimal transform $\psi \to (1+i\alpha) \psi$ one derives the real form of the conserved current...
- Physically the existence of a symmetry implies that a quantity is not observable (e.g. the invariance under a space translation means that it is not possible to fix an absolute position in space which can be therefore chosen arbitrarily).
- In the U(1) case the quantity α is called a global gauge.

In the particle physics Standard Model the fundamental interactions are built on symmetry principles, those of the *local gauge* transforms.

Local gauge invariance of the free particles Lagrangian:

• under the local transform $\psi \to e^{i\alpha} \psi$ where the α parameter depends on x^μ the Lagrangian

$$\mathcal{L}_{free} = \partial_{\mu} \psi^{\dagger} \partial^{\mu} \psi - m^2 \psi^{\dagger} \psi$$

is not invariant:

$$\psi \to e^{i\alpha} \psi \quad \Rightarrow \partial^{\mu}\psi \to \left(\partial^{\mu} + i\left(\partial^{\mu}\alpha\right)\right)\psi$$

$$\psi^{\dagger} \to e^{-i\alpha} \psi^{\dagger} \quad \Rightarrow \partial^{\mu}\psi^{\dagger} \to \left(\partial^{\mu} - i\left(\partial^{\mu}\alpha\right)\right)\psi^{\dagger}$$

$$\psi^{\dagger}\psi \to \psi^{\dagger}\psi \quad \odot$$

$$\partial_{\mu}\psi^{\dagger}\partial^{\mu}\psi \to \left(\partial^{\mu} - i\left(\partial^{\mu}\alpha\right)\right)\psi^{\dagger}\left(\partial^{\mu} + i\left(\partial^{\mu}\alpha\right)\right)\psi$$

$$= \partial_{\mu}\psi^{\dagger}\partial^{\mu}\psi - i\left(\partial^{\mu}\alpha\right)\psi^{\dagger}\partial^{\mu}\psi + \psi^{\dagger}i\left(\partial^{\mu}\alpha\right)\psi...$$

$$\Xi$$

Local gauge invariance of the free particles Lagrangian:

To force the invariance one introduces a covariant derivative :

$$D^{\mu}\psi = (\partial^{\mu} - ieA^{\mu})\psi$$

where A^{μ} is the gauge field which should transform as :

$$A^{\mu} \rightarrow A^{\mu} + \frac{1}{e} \partial^{\mu} \alpha$$

in order to balance the transform of the derivative terms

$$D^{\mu}\psi \rightarrow \left(\partial^{\mu} + i\left(\partial^{\mu}\alpha\right) - ieA^{\mu} - ie\left(\frac{1}{e}\partial^{\mu}\alpha\right)\right)\psi$$

$$D^{\mu}\psi^{\dagger} \rightarrow \left(\partial^{\mu}-i\left(\partial^{\mu}\alpha\right)+ieA^{\mu}+ie\left(\frac{1}{e}\partial^{\mu}\alpha\right)\right)\psi^{\dagger}$$

Local gauge invariance of the free particles Lagrangian:

The Lagrangian is modified into :

$$\mathcal{L}_{int} = D_{\mu} \psi^{\dagger} D^{\mu} \psi - m^{2} \psi^{\dagger} \psi$$

$$= \partial_{\mu} \psi^{\dagger} \partial^{\mu} \psi - m^{2} \psi^{\dagger} \psi$$

$$+ ie \left[A_{\mu} \psi^{\dagger} \partial^{\mu} \psi - \partial_{\mu} \psi^{\dagger} A^{\mu} \psi \right]$$

$$+ e^{2} A_{\mu} \psi^{\dagger} A^{\mu} \psi$$

- Forcing the U(1) invariance introduces a new vector field, the gauge field, which couples to the particles through 2 different types of vertices. Generic coupling term: $-J_{\mu}A^{\mu}$
- This gauge field is associated to the photon, responsible for the electromagnetic interaction.

3-3 U(1) gauge field

To really associate the gauge field of the U(1) symmetry to the photon it is mandatory to include the dynamics of the photon itself:

- Propagation equation in vacuum : $\Box A^{\mu} = 0$
- Photon interaction with its sources (Maxwell equations):

$$\partial_{\mu}F^{\mu\nu} = J^{\nu}$$

with the field tensor: $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$

Reminder : classical fields

$$A^{\mu} = \left(V, \vec{A}\right)$$

$$F_{0i} = \partial_0 A_i - \partial_i A_0 = -\frac{\partial (\vec{A})_i}{\partial t} - (\vec{\nabla})_i V = (\vec{E})_i$$

$$F_{ij} = \partial_i A_j - \partial_j A_i = \vec{\nabla}_i \vec{A}_j - \vec{\nabla}_j \vec{A}_i = \varepsilon_{ijk} \left(\vec{\nabla} \times \vec{B} \right)_k = \varepsilon_{ijk} \vec{B}_k$$

3-3 U(1) gauge field

• Propagation equations of the interacting field:

$$\begin{array}{c} \partial_{\mu}F^{\mu\nu}=J^{\nu}\\ & \downarrow \downarrow\\ \partial_{\mu}\left(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}\right)=J^{\nu}\\ \Box A^{\nu}-\partial^{\nu}\left(\partial_{\mu}A^{\mu}\right)=J^{\nu} \Longrightarrow \Box A^{\nu}=J^{\nu}\\ & \stackrel{=0}{\underset{\text{forentz}}{\underset{\text{gauge}}{\bigcap}}} \end{array}$$

• Dynamic term for the photon

$$\mathcal{L}_{free} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \left[\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \right) - \frac{\partial \mathcal{L}}{\partial A_{\nu}} = 0 \right]$$

• No mass term (!): $m^2 A_{\mu} A^{\mu}$ not invariant under U(1) transform

3-3 U(1) gauge field

Summary:

- Particle physics is described by local gauge theories
- Each invariance is associated with gauge field(s)
- Gauge fields couple to the particles
- For spinless particles the Q.E.D. Lagrangian density reads :

$$\mathcal{L}_{spin-0} = \partial_{\mu} \psi^{\dagger} \partial^{\mu} \psi - m^{2} \psi^{\dagger} \psi$$

$$+ ie \left[A_{\mu} \psi^{\dagger} \partial^{\mu} \psi - \partial_{\mu} \psi^{\dagger} A^{\mu} \psi \right] + e^{2} A_{\mu} \psi^{\dagger} A^{\mu} \psi$$

$$- \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

• What about ½-spin particles description?

4- The Dirac equation

Introduction (non-relativistic case): the Pauli equation

Preliminary remark on Pauli matrices :

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

if \vec{O}_1 and \vec{O}_2 are operators commuting with the Pauli matrices then

$$(\vec{\sigma}.\vec{O}_1)(\vec{\sigma}.\vec{O}_2) = \vec{O}_1.\vec{O}_2 + i\vec{\sigma}.(\vec{O}_1 \times \vec{O}_2)$$

• Applying the previous relation to \vec{P} leads to :

$$(\vec{\sigma}.\vec{P})(\vec{\sigma}.\vec{P}) = (\vec{\sigma}.\vec{P})^2 = \vec{P}^2 \Rightarrow H = \frac{(\vec{\sigma}.\vec{P})^2}{2m}$$

4-1 The non-relativistic case

• To describe the particle's motion in an E.M. field the covariant derivative prescription leads to :

$$p^{\mu} \rightarrow p^{\mu} + eA^{\mu}$$
 i.e.
$$\begin{cases} i\hbar\partial_{t} \rightarrow i\hbar\partial_{t} + eA^{0} \\ \vec{p} \rightarrow \vec{p} + e\vec{A} \end{cases}$$

The Schrödinger equation

$$i\hbar \frac{\partial \psi}{\partial t}(\vec{x},t) = \frac{\vec{P}^2}{2m} \psi(\vec{x},t)$$

can be rewritten as

$$i\hbar\frac{\partial\psi}{\partial t}(\vec{x},t) = \frac{\left(\vec{\sigma}.\left(\vec{P}+e\vec{A}\right)\right)^{2}}{2m}\psi(\vec{x},t) - eA^{0}\psi(\vec{x},t)$$

4-1 The non-relativistic case

• Using the Pauli matrices relation:

$$\begin{split} \left(\vec{\sigma}.\left(\vec{P}+e\vec{A}\right)\right)^2 &= \left(\vec{P}+e\vec{A}\right)^2 + i\vec{\sigma}.\left(\left(\vec{P}+e\vec{A}\right)\times\left(\vec{P}+e\vec{A}\right)\right) \\ \text{and } \left(\left(\vec{P}+e\vec{A}\right)\times\left(\vec{P}+e\vec{A}\right)\right)_i &= e\left(\vec{P}\times\vec{A}+\vec{A}\times\vec{P}\right)_i \\ &= e\; \varepsilon_{ijk}\left(\vec{P}_j\vec{A}_k + \vec{A}_j\vec{P}_k\right) \\ \Rightarrow -e\; i\hbar\varepsilon_{ijk}\left(\vec{\partial}_j\vec{A}_k + \vec{A}_j\vec{\partial}_k\right) &= -e\; i\hbar\varepsilon_{ijk}\left((\vec{\partial}_j\vec{A}_k) + (\vec{A}_k\vec{\partial}_j + \vec{A}_j\vec{\partial}_k\right)\right) \\ &= -e\; i\hbar\varepsilon_{ijk}\left(\vec{\partial}_j\vec{A}_k\right) \\ &= -e\; i\hbar\left(\vec{\nabla}\times\vec{A}\right)_i \\ &= e\; i\hbar\vec{B}_i \end{split}$$

4-1 The non-relativistic case

• Finally the Pauli equation reads

$$i\hbar\frac{\partial\psi}{\partial t}(\vec{x},t) = \frac{\left(\vec{P} + e\vec{A}\right)^2}{2m}\psi(\vec{x},t) - \frac{e\hbar}{2m}\left(\vec{\sigma}.\vec{B}\right)\psi(\vec{x},t) - eA^0\psi(\vec{x},t)$$

where the wavefunction is a 2D object.

- The action of the spin operator is explicit.
- N.B. developing $\vec{P} + e\vec{A}$ leads to $\vec{L}.\vec{B}$. One gets the complete equation through the substitution $\vec{L} \to \vec{L} + 2\vec{S}$ with $\vec{S} = \frac{\hbar}{2}\vec{\sigma}$

4-2 The Dirac equation

• Generalization to the relativistic case: the starting point is always

$$E^2 = \vec{p}^2 c^2 + m^2 c^4$$

which is the only covariant form for the canonical quantization:

$$\begin{bmatrix} \left(i\hbar\partial_{t}\right)^{2} - \left(\vec{\sigma}.\vec{P}\right)^{2} \end{bmatrix} \psi(\vec{x},t) = m^{2}\psi(\vec{x},t)$$

$$\begin{bmatrix} i\hbar\partial_{t} + i\hbar\vec{\sigma}.\vec{\nabla} \end{bmatrix} \begin{bmatrix} i\hbar\partial_{t} - i\hbar\vec{\sigma}.\vec{\nabla} \end{bmatrix} \psi = m^{2}\psi$$

• Let's take auxiliary variables :

$$\psi^{(1)} = \psi$$

$$\psi^{(2)} = \frac{1}{m} \left[i\hbar \partial_t - i\hbar \vec{\sigma} \cdot \vec{\nabla} \right] \psi$$

4-2 The Dirac equation

• The following system

$$\begin{cases}
\left[i\hbar\partial_{t}-i\hbar\vec{\sigma}.\vec{\nabla}\right]\psi^{(1)}=m\psi^{(2)} \\
\left[i\hbar\partial_{t}+i\hbar\vec{\sigma}.\vec{\nabla}\right]\psi^{(2)}=m\psi^{(1)}
\end{cases}$$

is equivalent to

$$\begin{cases} i\hbar\partial_{t}\varphi - i\hbar\vec{\sigma}.\vec{\nabla}\chi = m\varphi \\ -i\hbar\partial_{t}\chi - i\hbar\vec{\sigma}.\vec{\nabla}\varphi = m\chi \end{cases} \text{ with } \begin{cases} \varphi = \psi^{(2)} + \psi^{(1)} \\ \chi = \psi^{(2)} - \psi^{(1)} \end{cases}$$

• In a matrix form this equation reads:

$$\begin{pmatrix} i\hbar\partial_{t} & i\hbar\vec{\sigma}.\vec{\nabla} \\ -i\hbar\vec{\sigma}.\vec{\nabla} & -i\hbar\partial_{t} \end{pmatrix} \begin{pmatrix} \varphi \\ \chi \end{pmatrix} = m \begin{pmatrix} \varphi \\ \chi \end{pmatrix}$$

4-2 The Dirac equation

• Gamma matrices definition:

$$|\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \gamma_0 \text{ and } \vec{\gamma}^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} = -\vec{\gamma}_i$$

• Basic properties :

$$\left\{ \gamma^{\mu}, \gamma^{\nu} \right\} = \gamma^{\mu} \gamma^{\nu} + \gamma^{\nu} \gamma^{\mu} = 2g^{\mu\nu}$$
$$\left(\gamma^{0} \right)^{2} = 1 \text{ and } \left(\gamma^{i} \right)^{2} = -1$$
$$\gamma^{\mu\dagger} = \gamma^{0} \gamma^{\mu} \gamma^{0}$$

• "Slash" notation : $\phi = a_{\mu} \gamma^{\mu}$

• Reminder (Pauli matrices properties):

$$\bullet \left\{ \boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{j} \right\} = 2\boldsymbol{\delta}_{ij} \quad \left[\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{j} \right] = 2i\boldsymbol{\varepsilon}_{ijk} \boldsymbol{\sigma}_{k}$$

- $\bullet \ \sigma_{i}\sigma_{j} = \delta_{ij} + i\varepsilon_{ijk}\sigma_{k}$
- $\bullet \left(\vec{\sigma}.\vec{O}_1\right) \left(\vec{\sigma}.\vec{O}_2\right) = \vec{O}_1.\vec{O}_2 + i\vec{\sigma}.\left(\vec{O}_1 \times \vec{O}_2\right)$
- For \vec{u} unit vector $\frac{1}{2}(1\pm\vec{\sigma}.\vec{u})\chi$ eigenfunction of $\vec{\sigma}.\vec{u}$ with eigenvalue $\pm 1 \ \forall \chi$.

•
$$\exp\left(-i\frac{\theta}{2}\sigma_k\right) = \cos\left(\frac{\theta}{2}\right) - i\sigma_k\sin\left(\frac{\theta}{2}\right)$$

• Defining a 4D solution to the equation :

$$\boldsymbol{\psi} \equiv \begin{pmatrix} \boldsymbol{\varphi} \\ \boldsymbol{\chi} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\psi}_1 \\ \boldsymbol{\psi}_2 \\ \boldsymbol{\psi}_3 \\ \boldsymbol{\psi}_4 \end{pmatrix}$$

the previous matrix equation writes:

$$\begin{pmatrix} i\hbar\partial_{t} & i\hbar\vec{\sigma}.\vec{\nabla} \\ -i\hbar\vec{\sigma}.\vec{\nabla} & -i\hbar\partial_{t} \end{pmatrix} \begin{pmatrix} \varphi \\ \chi \end{pmatrix} = m \begin{pmatrix} \varphi \\ \chi \end{pmatrix}$$

$$\updownarrow$$

$$i\hbar \left(\gamma^0 \partial_0 + \gamma^i \partial_i \right) \psi = m \psi \text{ i.e.}$$

$$(i\hbar \gamma^{\mu}\partial_{\mu} - m)\psi = 0$$
 Dirac Equation

• In details :

$$\sum_{\mu=0,1,2,3} \sum_{b=1,2,3,4} \left(i\hbar \left(\gamma^{\mu} \right)_{ab} \partial_{\mu} - m\delta_{ab} \right) \psi_b = 0$$

Adjoint representation.

• As usual it is obtained through the "conjugate" equation :

$$(i\hbar \gamma^{\mu}\partial_{\mu} - m)\psi = 0 \Longrightarrow \psi^{\dagger} (i\hbar \gamma^{\mu\dagger} \overleftarrow{\partial}_{\mu} + m) = 0$$

Using the gamma matrices property : $\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$ one gets

$$\psi^{\dagger} \left(i\hbar \gamma^{0} \gamma^{\mu} \gamma^{0} \bar{\partial}_{\mu} + m \gamma^{0} \gamma^{0} \right) = 0$$

$$\psi^{\dagger} \gamma^{0} \left(i\hbar \gamma^{\mu} \gamma^{0} \bar{\partial}_{\mu} + m \gamma^{0} \right) = 0 \quad \leftarrow (\times \gamma^{0})$$

$$\overline{\psi} \left(i\hbar \gamma^{\mu} \bar{\partial}_{\mu} + m \right) = 0 \text{ where } \overline{\psi} = \psi^{\dagger} \gamma^{0}$$

Adjoint representation.

- $\overline{\psi} = \psi^{\dagger} \gamma^0$ is the adjoint spinor
- The conjugate equations read therefore:

$$(i\hbar \gamma^{\mu}\partial_{\mu} - m)\psi = 0$$
and
$$\overline{\psi}(i\hbar \gamma^{\mu}\overline{\partial}_{\mu} + m) = 0$$

• Reminder: spinless case (K.G.)

$$\partial^{\mu}\partial_{\mu}\psi + m^{2}\psi = 0$$
and
$$\partial^{\mu}\partial_{\mu}\psi^{*} + m^{2}\psi^{*} = 0$$

Quadri-current.

- Formal derivation possibilities :
 - directly from the fundamental and adjoint representations or
 - from the Lagrangian expression ⊕ gauge invariance (looking for the current coupling to the gauge field)
- Question: is the Born probabilistic interpretation possible in the Dirac case (i.e. is the charge density positive to be interpreted as a probability density?).
- Reminder: not the case in the spinless case where negative energy solutions and negative charge density should have been re-interpretated. $\psi(x) = Ne^{i(\vec{p}.\vec{x}-Et)/\hbar} \Rightarrow \rho = 2|N|^2 \times \mathcal{E}_{>0 \text{ or } 0<}$

Quadri-current.

Direct derivation :

- Conserved current : $J^{\mu} \equiv c(\bar{\psi}\gamma^{\mu}\psi)$
- Conserved charge density : $\rho = J^0 /_C = \overline{\psi} \gamma^0 \psi = \psi^\dagger \underbrace{\gamma^0 \gamma^0}_{=1} \psi$ $\Rightarrow \rho = \psi^\dagger \psi = \sum_{a=1,2,3,4} \psi_a^* \psi_a > 0$

Quadri-current (derived from gauge invariance).

- Lagrangian of free particles: $\mathcal{L}_{free} = \overline{\psi} (i \gamma^{\mu} \partial_{\mu} m) \psi$
- U(1) invariance \rightarrow use of covariant derivatives :

$$\mathcal{Q}_{\text{int.}} = \overline{\psi} (i \gamma^{\mu} D_{\mu} - m) \psi$$

$$= \overline{\psi} (i \gamma^{\mu} (\partial_{\mu} + i e A_{\mu}) - m) \psi$$

$$= \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi$$

$$- e \overline{\psi} \gamma^{\mu} \psi A_{\mu}$$

$$\propto J^{\mu}$$

where the interaction term appears on the form $-J_{\mu}A^{\mu}$ as for spinless particles.

Free particle solutions.

• By analogy with the non-relativistic case we may write a general spin-½ wavefunction in terms of factorized solutions :

$$\psi = u \times (\text{plane wave}) = u \times \exp(-ip^{\mu}x_{\mu}) = u \times \exp(-ipx) = u(p)e^{[i(\vec{p}.\vec{x}-Et)]}$$

where *u* is a 4-components spinor.

- The explicit expression of the spinor is more easily deduced from the Hamiltonian formalism of the Dirac equation.
- The wavefunction is split into two 2-components spinors

$$\psi = \begin{pmatrix} \varphi \\ \chi \end{pmatrix} \text{ where } \begin{cases} i\hbar \partial_t \varphi - i\hbar \vec{\sigma} \cdot \vec{\nabla} \chi = m\varphi \\ -i\hbar \partial_t \chi - i\hbar \vec{\sigma} \cdot \vec{\nabla} \varphi = m\chi \end{cases}$$

• The equations system may be written in terms of gamma matrices or equivalently:

$$\begin{cases} i\hbar\partial_{t}\varphi - i\hbar\vec{\sigma}.\vec{\nabla}\chi = m\varphi \\ -i\hbar\partial_{t}\chi - i\hbar\vec{\sigma}.\vec{\nabla}\varphi = m\chi \end{cases}$$

$$\Rightarrow i\hbar\partial_t \psi = \underbrace{\left(-i\hbar\left(\vec{\alpha}.\vec{\nabla}\right) + \beta m\right)}_{H_D} \psi$$

where
$$\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

• The eigenfunctions are solutions of :

$$H_D u = (\vec{\alpha}.\vec{p} + \beta m)u = Eu$$

Assuming the spinor u into two 2-components spinors u_A and u_B

$$u \equiv \begin{pmatrix} u_A \\ u_B \end{pmatrix}$$

$$\Rightarrow H_D u = (\vec{\alpha}.\vec{p} + \beta m)u = \begin{pmatrix} m \times 1 & \vec{\sigma}.\vec{p} \\ \vec{\sigma}.\vec{p} & -m \times 1 \end{pmatrix} \begin{pmatrix} u_A \\ u_B \end{pmatrix} = E \begin{pmatrix} u_A \\ u_B \end{pmatrix}$$

$$\Rightarrow \begin{cases} (\vec{\sigma}.\vec{p})u_B = (E-m)u_A \\ (\vec{\sigma}.\vec{p})u_A = (E+m)u_B \end{cases}$$

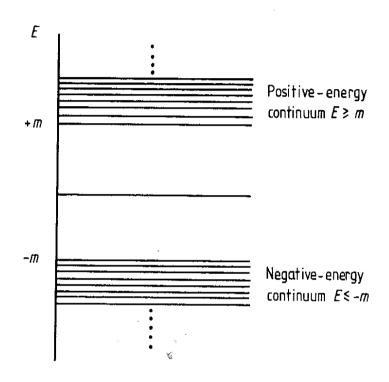
- The system leads to :
 a generic form for $u : u = \begin{pmatrix} u_A \\ \vec{\sigma} \cdot \vec{p} \\ \hline E \perp m \end{pmatrix} u_A$
 - a relation between E and p:

$$(\vec{\sigma}.\vec{p})(\vec{\sigma}.\vec{p})u_A = \vec{p}^2u_A = (E - m)(E + m)u_A \Rightarrow E = \pm E_p$$

Summary.

• Dirac's historical interpretation: the 'vacuum' state consists of all negative-energy states filled with electrons. The Pauli principle forbids any positive-energy electron from falling into these lower energy states.

• The 'vacuum' (so-called Dirac sea)
has now infinite negative charge
and energy but all observations represent finite fluctuations w.r.t. the
vacuum.



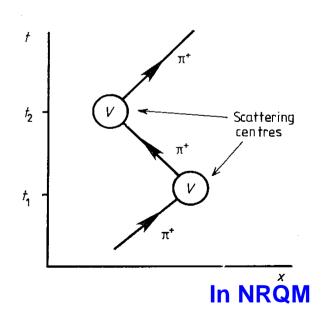
• A 'hole' in the Dirac sea, i.e. the absence of a negative-energy electron is equivalent to the presence of a positive-energy positively charged version of the electron, namely a positron.

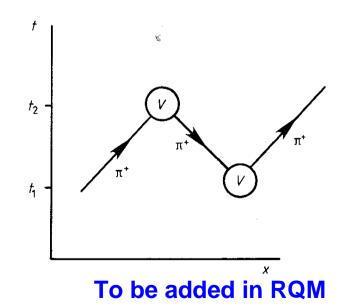
energy of 'hole' =
$$-(E_{neg}) \rightarrow$$
 positive energy

charge of 'hole' =
$$-(q_e) \rightarrow$$
 positive charge

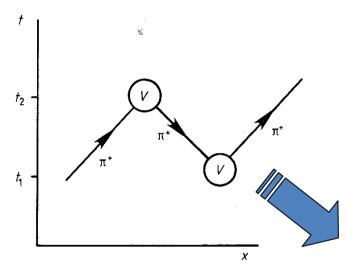
- What about solutions to the Klein-Gordon equation (bosons not affected by Pauli principle)?
- Interpretation through Feynman's prescription (1962):

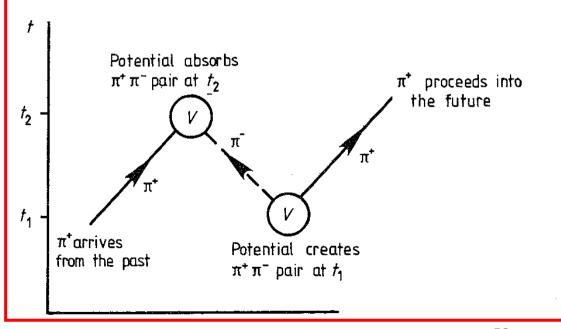
 negative-energy particle solutions propagating backward in time = positive-energy antiparticle solutions propagating forward in time





• Consequence of the Feynman prescription :





Summary.

Positive-energy solutions:

itive-energy solutions:

$$\psi^{(+)(s=1,2)}(x) \equiv u^{(s=1,2)}(p)e^{[-ipx]} \quad u^{(s)}(p) \propto \begin{pmatrix} \varphi^{(s)} \\ \frac{\vec{\sigma} \cdot \vec{p}}{E+m} \varphi^{(s)} \end{pmatrix}$$

Negative-energy solutions:

$$\psi^{(-)(s=1,2)}(x) \equiv v^{(s=1,2)}(p) e^{[+ipx]} \quad v^{(s)}(p) \propto \begin{pmatrix} \vec{\sigma} \cdot \vec{p} \\ E + m \end{pmatrix} \chi^{(s)}$$

with the spin-up/down 2D spinors
$$\varphi, \chi^{(s=1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\varphi, \chi^{(s=2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Warning on spin direction : negative-energy solution with spin- \uparrow = positive-energy solution with spin-↓

• Dirac equation in *p*-space :

$$(\gamma^{\mu} p_{\mu} - m) u(p) = 0$$
$$(\gamma^{\mu} p_{\mu} + m) v(p) = 0$$

• Adjoint spinors (same procedure as in x-space):

$$\overline{u}(p)(\gamma^{\mu}p_{\mu}-m)=0$$

$$\overline{v}(p)(\gamma^{\mu}p_{\mu}+m)=0$$

Ortho-normalization relations :

$$\overline{u}^{(s)}(p)u^{(s')}(p) = \delta_{ss'} \quad \overline{v}^{(s)}(p)v^{(s')}(p) = -\delta_{ss'}$$

$$\overline{u}^{(s)}(p)v^{(s')}(p) = 0 \quad \overline{v}^{(s)}(p)u^{(s')}(p) = 0$$

Some useful relations:

$$\sum_{s=1,2} u^{(s)}(p)\overline{u}^{(s)}(p) = (p+m)$$

$$\sum_{s=1,2} v^{(s)}(p)\overline{v}^{(s)}(p) = (p-m)$$

• 'Energy' projectors:

$$\Lambda_{+} = \frac{(p+m)}{2m} \text{ such as } \Lambda_{+}u = u \text{ and } \Lambda_{+}v = 0$$

$$\Lambda_{-} = \frac{(-p+m)}{2m} \text{ such as } \Lambda_{-}v = v \text{ and } \Lambda_{-}u = 0$$

$$\Lambda_{+}^{2} = \Lambda_{+} \text{ and } \Lambda_{+} + \Lambda_{-} = 1$$

• Spin projectors. The projection is done along the propagation direction of the particle (helicity operator) chosen as the 3rd axis:

$$\vec{p} = p_z \vec{e}_z \Rightarrow \frac{\vec{S} \cdot \vec{p}}{|\vec{p}|} = S_z = \frac{\hbar}{2} \begin{pmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 \bullet s=1

$$u^{(s=1)}(p) = N \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = N \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \frac{|\vec{p}|}{E + m} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = N \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \frac{|\vec{p}|}{E + m} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}$$

$$v^{(s=1)}(p) = N \begin{pmatrix} \vec{\sigma} \cdot \vec{p} \\ E + m \end{pmatrix} = N \begin{pmatrix} \frac{|\vec{p}|}{E + m} {1 \choose 0} \\ {1 \choose 0} \end{pmatrix} = N \begin{pmatrix} \frac{|\vec{p}|}{E + m} {1 \choose 0} \\ {1 \choose 0} \end{pmatrix} = N \begin{pmatrix} \frac{|\vec{p}|}{E + m} {1 \choose 0} \\ {1 \choose 0} \end{pmatrix}$$

•
$$s=2$$

$$u^{(s=2)}(p) = N \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ \frac{-|\vec{p}|}{E+m} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} \text{ and } v^{(s=2)}(p) = \begin{pmatrix} \frac{-|\vec{p}|}{E+m} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}$$

• The spinors are eigenstates of Sz with eigenvalues $\pm \frac{1}{2}$

$$S_z u^{(s)}(p) = \pm \frac{\hbar}{2} u^{(s)}(p) \text{ for } s = \begin{cases} 1\\2 \end{cases}$$

$$V.p. = -1/2$$
Left-handed

• Case of massless fermions :

$$H_D u = (\vec{\alpha}.\vec{p})u = \begin{pmatrix} 0 & \vec{\sigma}.\vec{p} \\ \vec{\sigma}.\vec{p} & 0 \end{pmatrix} \begin{pmatrix} u_A \\ u_B \end{pmatrix} = E \begin{pmatrix} u_A \\ u_B \end{pmatrix} \Rightarrow \begin{cases} (\vec{\sigma}.\vec{p})u_B = Eu_A \\ (\vec{\sigma}.\vec{p})u_A = Eu_B \end{cases}$$
one has two solutions : $u_B = u_A$ or $u_B = -u_A$

• Dirac equation decouples into two equations for 2D spinors:

$$\begin{cases} (\vec{\sigma}.\vec{p})\omega = -E\omega & \text{(1)} \\ (\vec{\sigma}.\vec{p})\eta = +E\eta & \text{(2)} \end{cases} \text{ with } E = \pm |\vec{p}| \\ \text{- positive-energy solution for (1)} => \qquad (\vec{\sigma}.\hat{p})\omega = -\omega \\ \text{describes a neutrino of energy } E \text{ and negative helicity} => \text{left } v \\ \text{- negative-energy solution for (1)} => (\vec{\sigma}.\hat{p})\omega = +\omega \\ \text{describes an antineutrino of energy } E \text{ and positive helicity} \\ => \text{right } \overline{v} \end{cases}$$

Helicity projector:

• Case of massless fermions (II):

$$(1) \Rightarrow \begin{cases} \mathbf{V}_L \\ \overline{\mathbf{V}}_R \end{cases} \text{ and } (2) \Rightarrow \begin{cases} \mathbf{V}_R \\ \overline{\mathbf{V}}_L \end{cases}$$

• Defining the matrix :

$$\gamma_5 = i\gamma_0\gamma_1\gamma_2\gamma_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \begin{cases} \left\{ \gamma_5, \gamma^{\mu} \right\} = 0 \\ \gamma_5^2 = 1 \end{cases}$$

one uses the following projectors onto L or R states to generate the electron-neutrino coupling term (V-A theory of weak interactions):

$$J^{\mu} = \overline{\psi}_e \gamma^{\mu} \frac{1}{2} (1 - \gamma_5) \psi_{\nu_e}$$

4-5 Charge conjugation operator

A ½-spin particle in an E.M. field follows the usual Dirac equation :

$$\left[\gamma^{\mu}\left(i\partial_{\mu}-eA_{\mu}\right)-m\right]\psi=0$$

What is the analog for an anti-particle described by a C-conjugate

spinor?
$$\left[\gamma^{\mu} \left(i \partial_{\mu} + e A_{\mu} \right) - m \right] \psi_{C} = 0$$

Following basic developments :
$$\left[\gamma^{\mu} \left(i \partial_{\mu} - e A_{\mu} \right) - m \right] \psi = 0$$

$$\Rightarrow \left[\gamma^{\mu^*} \left(-i \partial_{\mu} - e A_{\mu} \right) - m \right] \psi^* = 0$$

$$\Rightarrow \left[-\gamma^{\mu^*} \left(i \partial_{\mu} + e A_{\mu} \right) - m \right] \psi^* = 0$$

Defining C such that : $-(C\gamma^0)\gamma^{\mu^*} = \gamma^{\mu}(C\gamma^0)$ one gets

$$\left[\gamma^{\mu} \left(i \partial_{\mu} + e A_{\mu} \right) - m \right] \left(C \gamma^{0} \psi^{*} \right) = 0 \text{ i.e. } \psi_{C} = C \gamma^{0} \psi^{*}$$

4-5 Charge conjugation operator

In Dirac representation the C-conjugation operator is given by :

$$\psi_C = C \gamma^0 \psi^* \Rightarrow C = i \gamma^2 \gamma^0 \hat{K} = C^{-1}$$

Application:

$$\left(\boldsymbol{\psi}^{(+)(s)} \right)_{C} = i \gamma^{2} \left(u^{(s)}(p) e^{[-ipx]} \right)^{*} = i \begin{pmatrix} 0 & \sigma_{2} \\ -\sigma_{2} & 0 \end{pmatrix} \begin{pmatrix} \chi^{(s)} \\ \frac{\vec{\sigma}^{*} \cdot \vec{p}}{E+m} \chi^{(s)} \end{pmatrix} e^{[ipx]}$$

$$= i \begin{pmatrix} \frac{\sigma_{2}\vec{\sigma}^{*} \cdot \vec{p}}{E+m} \chi^{(s)} \\ -\sigma_{2}\chi^{(s)} \end{pmatrix} e^{[ipx]} = i \begin{pmatrix} \frac{-\vec{\sigma} \cdot \vec{p}\sigma_{2}}{E+m} \chi^{(s)} \\ -\sigma_{2}\chi^{(s)} \end{pmatrix} e^{[ipx]}$$

$$= \begin{pmatrix} \frac{\vec{\sigma} \cdot \vec{p}}{E+m} \chi^{(s')} \\ \chi^{(s')} \end{pmatrix} e^{[ipx]} = -v^{(s')}(p) e^{[ipx]} = -\psi^{(-)(s')}$$

Summary

- Relativistic propagation equations derived from energy definition law => Klein-Gordon (bosons) and Dirac (fermions)
- Gauge invariance imposed to the theory => existence of conserved currents coupled to gauge fields (e.g. photons for EM)
- From classical to quantum field theory : fields => operators
- Lagrangian formalism widely used.