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Symétries et Parti
ules

Année 2014 - 2015- Semestre 2b

TD 1 : Ordres de grandeurs et symétries

1 Ordres de grandeur

1- On rappelle que h = 6, 62.10−34
Js et que 1 barn = 10−28

m

2
.

Donner la valeur de ~ en MeV s.

~ = h
2π = 6,62.10−34

2π1,6.10−19 10
−6 = 6, 58.10−22

MeV s.

�� Donner la valeur de ~c en MeV fm.

~ = 1, 055.10−34
Js et ~c = 1, 055.10−34 10−6

1,6.10−19 3.10
81015 = 197 MeV fm.

� Donner la valeur de (~c)2 en GeV

2
mbarn.

(~c)2 = 3, 89.104 MeV

2
fm

2
. 1 MeV

2 = 10−6
GeV

2
et 1 fm

2
=10−30

m

2
=10−2

barn=10 mbarn. et

104.10−6.10 = 0.1 don
 (~c)2 = 0.389 GeV

2
mbarn.

2- � Quelle distan
e par
ourt une parti
ule ultrarelativiste en 1 ns ?

l = 3.108 ∗ 10−9 = 0.3m

� Quelle durée met une parti
ule de masse nulle pour traverser un proton ?

taille d'un proton d = 1fm = 10−15m don
 t = 10−15

3.108
= 3.10−24s

3- Comparer les temps de vie des divers mésons suivants, déduire la nature des for
es à l'÷uvre, et

proposer un shéma de désintegration :

� π+ ( 
ontenu en quarks ud̄ ) M = 140MeV, cτ = 7, 8m
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Le temps de vie du π+ est 2, 6 10−8s. Il s'agit d'un temps relativement long. La désintégration se fait

par intera
tion faible :

�

W+

u

d̄

µ+

νµ

Notez que le τ est trop lourd (1.7 GeV/


2
), que le spin du pion vaut 0, et que le neutrino de spin 1/2

et de masse nulle dans le modèle standard est d'héli
ité gau
he. Il faut don
 un anti-lepton gau
he. Or

les intera
tions faibles violant la parité, une parti
ule de spin 1/2 est gau
he, une anti-parti
ule de spin

1/2 est droite. Les leptons 
hargés sont massifs don
 peuvent avoir une 
omposante de l'autre héli
ité

et d'autant plus que le masse est grande .

NB : héli
ité gau
he = -1 = spin antiparallèle ave
 l'impulsion.

� π0 ( quarks (uū− dd̄)/
√
2 ) M = 135MeV, τ = 8, 4× 10−17

s

Désintégration rapide : éle
tromagnétique.

�

u

ū

γ

γ

Notons que la désintégration en e

+
e

−
est supprimée. L'intéra
tion éle
tromagnétique 
onserve la 
hiral-

ité qui, à haute énergie, tend à se 
onfondre ave
 l'héli
ité. Les 
ouplages photon-lepton-lepton possibles

sont ave
 2 leptons identiques de même héli
ité (
hiralité) ou ave
 2 antileptons de même héli
ité ou

ave
 un lepton et un antilepton d'héli
ité di�érente (voir Quarks et Lepton d'Halzen et Martin se
tion

6.6). Cette 
onservation de l'héli
ité n'est véri�ée qu'à des termes d'ordre mlepton/energie près.
Le π0 a JPC = 0−+

, son moment 
inétique total est J = 0 = L + S, en tant que 
ombinaison de 2

quarks de spin

1
2 , il ne peut y avoir que S = 0 ou 1 et don
 S = L = 0 ou S = L = 1 par 
ombinaison

des moments 
inétiques. La parité du système e

+
e

−
est −1 et doit 
orrespondre à (−1)L+1

, 
e qui

ne permet que la 
ombinaison L = S = 0. Dès lors, la désintégration du π0 en e

+
e

−
n'est possible

qu'en se désintégrant en 2 fermions de même héli
ité. Or 
e 
ouplage est supprimé par un fa
teur

me

energie = me

mπ/2
= 0.5

67.5 = 7× 10−3
et don
 au 
arré :

(

me

mπ/2

)2
= 6× 10−5

et le taux de bran
hement du

π0 en e

+
e

−
est de 6.46 × 10−8

.

� φ ( état lié ss̄ ) M = 1, 02GeV , Γ = 4, 4MeV. On signale que MK+ = 494MeV .
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τ = ~/Γ = 6.5810−22/4.4 = 1.510−22
s. Il s'agit don
 d'une désintégration forte. φ → K+ +K−

. (La

désintégration en 3 pions semble plus favorable 
inématiquement mais né
essite des gluons su�sam-

ment durs pour 
réer des paires qq̄. De tels gluons ne 
ouplent que très faiblement. Typiquement un

graphe de Feynman que l'on peut 
ouper en ne 
oupant que les lignes de gluons est supprimé pour


ette raison (règle de OZI du noms des 3 physi
iens qui l'ont remarqué ))

φ→ K+ +K− φ→ π−π0π+

�

s

s̄

s

ū

u

s̄

�

s

s̄

u
d̄

d
d̄

d
ū

La désintégration du φ en 2 pions est supprimée 
ar elle viole la G-parité et ne peut don
 pas se faire

par intera
tion forte. La G-parité du φ est -1 et la G-parité d'un système de n pions vaut (−1)n.

� J/ψ ( état lié cc̄ ) M = 3, 1GeV , Γ = 90keV. On signale que MD0 = 1, 9GeV .

Le temps de vie est plus long que pour le φ malgré une masse nettement plus lourde. En e�et :

J/ψ → D++D−
impossible à 
ause de la masse des D, la désintégration en 3 Kaons est supprimée par

OZI qui devient du même ordre que la désintégration éle
tromagnétique en 2 leptons ou deux quarks.

NB : τ =
~

Γ
=

6, 58.10−22

90.10−3
= 7, 3.10−21s

L'étude des taux de désintégration du J/ψ montre que pour l'essentiel, la désintégration de 
elui-
i est

gouvernée par l'intera
tion forte supprimée par OZI et l'intera
tion éle
tromagnétique.

4- E
rire le 
arré de la 
harge de l'ele
tron en unité sans dimension.

α = e2/4πε0~c = 1/137

2 Groupes SU(2) et SU(3)

1- On 
onsidère la matri
e U(θ, ~u) = e−iθ
∑

a uaσa/2
où σi sont les matri
es de Pauli et ~u, un ve
teur

unitaire. Montrer que U(θ, ~u) = cos
θ

2
− i~u · ~σ sin θ

2
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[σa, σb] = 2i
∑

c ǫabcσc = σaσb − σbσa
{σa, σb} = 2δabI = σaσb + σbσa

⇒ σaσb =
1

2
([σa, σb] + {σa, σb}) =

∑

c

iǫabcσc + δabI

⇒ (~a · ~σ)(~b · ~σ) =
(

∑

i

aiσi

)





∑

j

bjσj



 =
∑

i

∑

j

aibjσiσj

⇒ (~a · ~σ)(~b · ~σ) =
∑

i

∑

j

aibj

[

∑

k

iǫijkσk + δijI

]

= (~a ·~b)I + i(~a×~b) · ~σ

⇒ (~a · ~σ)2 = ~a2I = ~a2

⇒ (~u · ~σ)2 = I

e−iθ~u·~σ/2 =
∞
∑

n=0

(−iθ~u · ~σ/2)n
n!

=

∞
∑

n=0

(−iθ~u · ~σ/2)2n
(2n)!

+

∞
∑

n=0

(−iθ~u · ~σ/2)2n+1

(2n + 1)!

⇒ e−iθ~u·~σ/2 =
∞
∑

n=0

(−1)n (θ/2)2n

(2n)!
I − i

∞
∑

n=0

(−1)n (θ/2)2n+1

(2n + 1)!
~u · ~σ

⇒ e−iθ~u~σ/2 = cos(θ/2)− i~u · ~σ sin(θ/2)

2- Montrer que dans SU(2), 2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2, et exprimer les états de la somme dire
te des

représentations irrédu
tibles en fon
tion des états du produit tensoriel. On pré
isera la symétrie

des états 
orrespondants aux représentations irrédu
tibles.

On 
ombine deux représentations irrédu
tibles de SU(2), dont le module de représentation est donné

par les ve
teurs propres des opérateurs J2
i et Jzi dans 
ha
une des deux représentations notés |j1m1〉

et |j2m2〉 ave
 ji(ji +1) et mi les valeurs propres 
orrespondantes pour J
2
i et Jzi . Le produit dire
t de

deux représentations irrédu
tibles de SU(2) admet un module de représentation donné par les ve
teurs

propres des opérateurs J2
et Jz dont les j(j + 1) valeurs propres possibles 
orrespondent aux valeurs

de j allant de |j1− j2| à j1+ j2. Pour 
haque valeur de j, il y a 2j+1 ve
teurs propres de valeur propre
m de Jz allant de −j à +j.
Dans le 
as de deux représentations de dimension 2, que l'on peut asso
ier à la 
ombinaison de deux

spins

1
2 , on obtient les valeurs de j'=1, 0 ave
 m′ = −1, 0, 1 pour j′ = 1 (un triplet) et m′ = 0 pour

j'=0 (un état singlet). On a don
 2⊗ 2 = 3⊕ 1. On y 
ombine un 3eme
spin

1
2 . En le 
ombinant ave


j′ = 1, on obtient j = 3
2 ,

1
2 ave
 respe
tivement 4 ve
teurs propres de Jz pour j =

3
2 , de valeurs propres

m = −3
2 ,−1

2 ,
1
2 ,

3
2 , et 2 ve
teurs propres de Jz pour j =

1
2 , de valeurs propres m = −1

2 ,
1
2 .

ENS - Lyon 4 M1 - Symétries et Parti
ules



En 
ombinant le 3eme
spin

1
2 ave
 j′ = 0, on obtient un deuxième doublet de ve
teurs propres ave


les valeurs propres j = 1
2 et m = −1

2 ,
1
2 . On retrouve bien une somme dire
te d'une représentation de

dimension 4 et de 2 représentations de dimension 2.

On 
onsulte les tables de 
oe�
ients de Clebs
h-Gordan pour exprimer les fon
tions d'ondes asso
iées.

On 
onstruit d'abord la fon
tion d'onde asso
iée à deux spins

1
2 .

|1 1〉 = |1
2

1

2
〉|1
2

1

2
〉

|1 0〉 = 1√
2

(

|1
2

1

2
〉|1
2

− 1

2
〉+ |1

2
− 1

2
〉|1
2

1

2
〉
)

|0 0〉 = 1√
2

(

|1
2

1

2
〉|1
2

− 1

2
〉 − |1

2
− 1

2
〉|1
2

1

2
〉
)

|1 − 1〉 = |1
2

− 1

2
〉|1
2

− 1

2
〉

On 
ombine le 3eme
ave
 le triplet et le singlet. Le nombre entre parenthèses étant la valeur de j'.

|3
2

3

2
(1)〉 = |1 1〉|1

2

1

2
〉

|3
2

1

2
(1)〉 = 1√

3
|1 1〉|1

2
− 1

2
〉+

√

2

3
|1 0〉|1

2

1

2
〉

|3
2

− 1

2
(1)〉 =

√

2

3
|1 0〉|1

2
− 1

2
〉+ 1√

3
|1 − 1〉|1

2

1

2
〉

|3
2

− 3

2
(1)〉 = |1 − 1〉|1

2
− 1

2
〉

|1
2

1

2
(1)〉 =

√

2

3
|1 1〉|1

2
− 1

2
〉 − 1√

3
|1 0〉|1

2

1

2
〉

|1
2

− 1

2
(1)〉 = 1√

3
|1 0〉|1

2
− 1

2
〉 −

√

2

3
|1 − 1〉|1

2

1

2
〉

|1
2

1

2
(0)〉 = |0 0〉|1

2

1

2
〉

|1
2

− 1

2
(0)〉 = |0 0〉|1

2
− 1

2
〉

Don
,

|3
2

3

2
(1)〉 = |1

2

1

2
〉|1
2

1

2
〉|1
2

1

2
〉

|3
2

1

2
(1)〉 = 1√

3

(

|1
2

1

2
〉|1
2

1

2
〉|1
2

− 1

2
〉+ |1

2

1

2
〉|1
2

− 1

2
〉|1
2

1

2
〉+ |1

2
− 1

2
〉|1
2

1

2
〉|1
2

1

2
〉
)

|3
2

− 1

2
(1)〉 = 1√

3

(

|1
2

1

2
〉|1
2

− 1

2
〉|1
2

− 1

2
〉+ |1

2
− 1

2
〉|1
2

1

2
〉|1
2

− 1

2
〉+ |1

2
− 1

2
〉|1
2

− 1

2
〉|1
2

1

2
〉
)

|3
2

− 3

2
(1)〉 = |1

2
− 1

2
〉|1
2

− 1

2
〉|1
2

− 1

2
〉

|1
2

1

2
(1)〉 =

√

2

3
|1
2

1

2
〉|1
2

1

2
〉|1
2

− 1

2
〉 − 1√

6
|1
2

1

2
〉|1
2

− 1

2
〉|1
2

1

2
〉 − 1√

6
|1
2

− 1

2
〉|1
2

1

2
〉|1
2

1

2
〉

|1
2

− 1

2
(1)〉 = 1√

6
|1
2

1

2
〉|1
2

− 1

2
〉|1
2

− 1

2
〉+ 1√

6
|1
2

− 1

2
〉|1
2

1

2
〉|1
2

− 1

2
〉 −

√

2

3
|1
2

− 1

2
〉|1
2

− 1

2
〉|1
2

1

2
〉

|1
2

1

2
(0)〉 = 1√

2

(

|1
2

1

2
〉|1
2

− 1

2
〉|1
2

1

2
〉 − |1

2
− 1

2
〉|1
2

1

2
〉|1
2

1

2
〉
)

|1
2

− 1

2
(0)〉 = 1√

2

(

|1
2

1

2
〉|1
2

− 1

2
〉|1
2

− 1

2
〉 − |1

2
− 1

2
〉|1
2

1

2
〉|1
2

− 1

2
〉
)

Les états du quadruplet sont symétriques. |32 3
2(1)〉, |32 1

2(1)〉, |32 − 1
2(1)〉, |32 − 3

2(1)〉
Les états du doublet 
orrespondant à j'=1 sont mixed-symétriques : |12 1

2(1)〉, |12 − 1
2(1)〉

Les états du doublet 
orrespondant à j'=0 sont mixed-antisymétriques : |12 1
2 (0)〉, |12 − 1

2(0)〉
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3- On veut déterminer les 
onstantes de stru
tures de SU(3), 
'est à dire les fabc tels que

[λa/2, λb/2] = ifabcλc/2. Où les λi sont les matri
es de Gell-Mann génératri
es de SU(3).

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 λ3 =





1 0 0
0 −1 0
0 0 0



 λ4 =





0 0 1
0 0 0
1 0 0





λ5 =





0 0 −i
0 0 0
i 0 0



 λ6 =





0 0 0
0 0 1
0 1 0



 λ7 =





0 0 0
0 0 −i
0 i 0



 λ8 =
1√
3





1 0 0
0 1 0
0 0 −2





� Combien y a-t-il de 
onstantes fabc ?

8× 8× 8 = 512

� Montrer que les matri
es de Gell-Mann obéissent à la normalisation tr(λiλj) = 2δij , où δij est
le symbole de Krone
ker.

Produit de matri
es Cij =
∑

k

AikBkj

Tra
e = somme des éléments diagonaux, pour un produit :

∑

i

Cii =
∑

i

∑

k

AikBki : 
ommutatif en

AB.

Les matri
es de Gell-Mann sont soit symétriques Aij = Aji soit antisymétriques Aij = −Aji.

Les matri
es symétriques sont λ1, λ3, λ4, λ6 et λ8, les matri
es antisymétriques sont λ2, λ5 et λ7.
La tra
e du produit d'une matri
e symétrique par une matri
e antisymétrique est nulle.

La tra
e du produit de 2 matri
es symétriques vaut

∑

i

∑

k

AikBik et 
orrespond à la somme des

produits des éléments de matri
es. Parmi λ1, λ3, λ4, λ6 et λ8, seules λ3 et λ8 ont des éléments de

matri
e non nuls au mêmes endroit et

Tr(λ3λ8) =
1√
3
− 1√

3
= 0

La tra
e du produit de 2 matri
es antisymétriques vaut −
∑

i

∑

k

AikBik et 
orrespond à l'opposé de

la somme des produits des éléments de matri
es. Les 3 matri
es λ2, λ5 et λ7 ont leurs éléments de

matri
es non nuls à des positions di�érentes.

Don
 Tr(λiλj) = 0 si i 6= j

Il nous reste à 
al
uler Tr(λiλi). Les matri
es λ1, λ3, λ4, λ6 et λ8 sont symétriques et leurs éléments

sont rééls. Don
 Tr(λ2i ) =
∑

i

∑

k A
2
ik.

Les matri
es λ1, λ3, λ4 et λ6 ont tous leurs éléments non nuls sauf deux qui valent 1 et don
 leur tra
e

vaut 12 + 12 = 2
Tr(λ28) =

1
3(1

2 + 12 + 22) = 1
3(1 + 1 + 4) = 2

Les matri
es λ2, λ5 et λ7 sont antisymétriques et leurs éléments sont imaginaires purs. Don


Tr(λ2i ) = −∑i

∑

k A
2
ik =

∑

i

∑

k |Aik|2.
Leurs éléments sont tous nuls sauf deux dont le module vaut 1 don
 leur tra
e vaut 12 + 12 = 2

On a don
 bien Tr(λiλj) = 2δij .
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� En déduire que fabc =
−i
4
Tr(λc[λa, λb]) et que fabc est totalement antisymétrique.

Par dé�nition : [λa/2, λb/2] = i
∑

c

fabcλc/2 ⇒ 1

2

∑

c

fabcλc =
−i
4

[λa, λb]

⇒ 1

2
λd
∑

c

fabcλc =
−i
4
λd [λa, λb]

⇒ 1

2
Tr

(

∑

c

fabcλdλc

)

=
−i
4
Tr (λd [λa, λb])

⇒ 1

2

∑

c

fabcTr (λdλc) =
−i
4
Tr (λd [λa, λb])

⇒ 1

2

∑

c

fabc2δdc =
−i
4
Tr (λd [λa, λb])

⇒ fabd =
−i
4
Tr (λd [λa, λb])

Pour prouver que fabd est totalement antisymétrique, on utilise les propriétés suivantes des tra
es et

des 
ommutateurs :







[AB,C] = A [B,C] + [A,C]B
[A,BC] = B [A,C] + [A,B]C = [AB,C] + [CA,B]
Tr(AB) = Tr(BA) et donc la trace d′un commutateur est toujours nulle.

Si on permute a et b, le 
ommutateur 
hange de signe. On a bien fabd = −fbad.
Si on permute b et d, fadb = −i

4 Tr (λb [λa, λd]) = −i
4 Tr ([λa, λd]λb) = −i

4 Tr ([λa, λdλb]) +
i
4Tr (λd [λa, λb]) = −fabd
Si on permute a et d, fdba = −i

4 Tr (λa [λd, λb]) = −i
4 Tr ([λd, λb]λa) = −i

4 Tr ([λdλa, λb]) +
i
4Tr (λd [λa, λb]) = −fabd

� Cal
uler les fabc .

f123 = 1

f458 = f678 =
√
3
2

f147 = f165 = f246 = f257 = f345 = f376 =
1
2

3 Isospin

1- On note p†α et pα les opérateurs de 
réation et d'annihilation d'un proton dans l'état |α〉. On
note n†α et nα les opérateurs de 
réation et d'annihilation d'un neutron dans l'état |α〉. Ces
opérateurs véri�ent les relations d'anti
ommutations

{

pα, p
†
β

}

= pαp
†
β + p

†
βpα = δαβ ,

{

p†α, p
†
β

}

=

0, {pα, pβ} = 0 et des relations similaires pour n†α et nα. Les opérateurs 
on
ernant un proton

anti
ommutent ave
 
eux 
on
ernant un neutron. On se limite dans 
et exer
i
e aux états ne


omprenant qu'un seul nu
léon.

� Donner l'expression de l'opérateur T+ é
hangeant le neutron par un proton.
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T+ =
∑

α

p†αnα

� Donner l'expression de l'opérateur T− é
hangeant le proton par un neutron.

T− =
∑

α

n†αpα

� Cal
uler T3 = [T+, T−].

T3 = [T+, T−]

= T+T− − T−T+

=
∑

α

∑

β

p†αnαn
†
βpβ −

∑

α

∑

β

n†αpαp
†
βnβ

=
∑

α

∑

β

(

p†α(nαn
†
β)pβ − n†α(pαp

†
β)nβ

)

=
∑

α

∑

β

(

p†α(δαβ − n†βnα)pβ − n†α(δαβ − p†βpα)nβ
)

=
∑

α

∑

β

(

p†αδαβpβ − p†αn
†
βnαpβ − n†αδαβnβ + p†βn

†
αnβpα

)

=
∑

α

∑

β

δαβ

(

p†αpβ − n†αnβ
)

=
∑

α

(

p†αpα − n†αnα
)

� Cal
uler [T3, T+] et [T3, T−]

[p†αpα, p
†
βnβ] = p†αpαp

†
βnβ − p†βnβp

†
αpα

= p†αpαp
†
βnβ − p†βp

†
αpαnβ

= p†αpαp
†
βnβ + p†αp

†
βpαnβ

= p†α
{

pα, p
†
β

}

nβ

= δαβp
†
αnβ
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[n†αnα, p
†
βnβ] = n†αnαp

†
βnβ − p†βnβn

†
αnα

= n†αnαp
†
βnβ + p†βn

†
αnβnα − p†βδαβnα

= n†αnαp
†
βnβ + n†αp

†
βnαnβ − p†βδαβnα

= n†αnαp
†
βnβ − n†αnαp

†
βnβ − p†βδαβnα

= −δαβp†βnα

[T3, T+] =
∑

α

∑

β

[p†αpα, p
†
βnβ]−

∑

α

∑

β

[n†αnα, p
†
βnβ]

=
∑

α

∑

β

δαβp
†
αnβ +

∑

α

∑

β

δαβp
†
βnα

= 2
∑

α

p†αnα

= 2T+
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[p†αpα, n
†
βpβ] = p†αpαn

†
βpβ − n†βpβp

†
αpα

= p†αpαn
†
βpβ + n†βp

†
αpβpα − n†βδαβpα

= p†αpαn
†
βpβ + p†αn

†
βpαpβ − n†βδαβpα

= p†αpαn
†
βpβ − p†αpαn

†
βpβ − n†βδαβpα

= −δαβn†βpα

[n†αnα, n
†
βpβ] = n†αnαn

†
βpβ − n†βpβn

†
αnα

= n†αnαn
†
βpβ − n†αn

†
βpβnα

= n†αnαn
†
βpβ + n†αn

†
βnαpβ

= n†α
{

nα, n
†
β

}

pβ

= δαβn
†
αpβ

[T3, T−] =
∑

α

∑

β

[p†αpα, n
†
βpβ]−

∑

α

∑

β

[n†αnα, n
†
βpβ]

= −
∑

α

∑

β

δαβn
†
βpα −

∑

α

∑

β

δαβn
†
αpβ

= −2
∑

α

n†αpα

= −2T−

� Quelle est l'algèbre engendrée par les opérateurs t+ =
1√
2
T+, t− =

1√
2
T−, t3 =

1

2
T3

[t+, t−] =
1

2
[T+, T−] =

1

2
T3 = t3

[t3, t+] =
1

2

1√
2
[T3, T+] =

1

2

1√
2
2T+ = t+

[t3, t−] =
1

2

1√
2
[T3, T−] =

1

2

1√
2
(−2)T− = −t−

C'est l'algèbre SU(2) de l'isospin.

2- Le proton et le neutron sont des états d'isospin I = 1/2 Les ∆ des états d'isospin I = 3/2, de
masse M = 1, 232 GeV, et les pions, des états d'isospin I = 1.
� Comparer les amplitudes des pro
essus

π+ + p→ π+ + p
π− + p→ π− + p
π− + p→ π0 + n
en fon
tion de l'amplitude des pro
essus idéaux M3/2 et M1/2
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On a trouvé en 2.2- la 
ombinaison de 3 spins :

1
2 , i
i on a 3 isospins

1
2 , 
e qui donne la même 
hose.

Plus pré
isément, on a une 
ombinaison du pion (isospin j=1, m=-1,0,1) ave
 un proton (isospin

j=1/2 m=+1/2) ou un neutron (isospin j=1/2 m=-1/2)

Les 
oe�
ients et les dé
ompositions se lisent dans la table des Clebs
h-Gordan.

p+ π+ 
orrespond à |12 1
2〉|1 1〉 = |32 3

2〉
p+ π− 
orrespond à |12 1

2〉|1 − 1〉 =
√

1
3 |32 − 1

2 〉 −
√

2
3 |12 − 1

2〉

n+ π0 
orrespond à |12 − 1
2 〉|1 0〉 =

√

2
3 |32 − 1

2〉+
√

1
3 |12 − 1

2〉

Puisque l'intéra
tion forte 
onserve l'isospin, 〈32m|M|12m〉 = 0
On a M3/2 = 〈32m|M|32m〉 et M1/2 = 〈12m|M|12m〉 don
 :
〈π+ + p|M|π+ + p〉 = M3/2

〈π− + p|M|π− + p〉 = 1
3M3/2 +

2
3M1/2

〈π− + p|M|π0 + n〉 =
√
2
3 M3/2 −

√
2
3 M1/2

� dans le 
as où l'énergie dans le 
entre de masse vaut 1, 232 GeV (voir les données expérimentales

de la Figure 1), montrer que

σ
tot

(π+ + p)

σ
tot

(π− + p)
= 3

σ
tot

(π+ + p)

σ
tot

(π− + p)
=

|〈π+ + p|M|π+ + p〉|2
|〈π− + p|M|π− + p〉|2 + |〈π0 + n|M|π− + p〉|2

=
|M3/2|2

1
9 |M3/2 + 2M1/2|2 + 2

9 |M3/2 −M1/2|2

≃
9|M3/2|2
3|M3/2|2

Le ∆ est 
onnu de I=3/2, don
 M3/2 >>M1/2 pour ECM=1,232 GeV.

Référen
es

[1℄ JB Zuber, Introdu
tion à la théorie des groupes et de leur

représentations,http://hal.ar
hives-ouvertes.fr/do
s/00/09/29/68/PDF/
el-41.pdf

[2℄ D. Gri�ths, Introdu
tion to Elementary Parti
les, Wiley Ed., 2008, (p134)

Matri
es de Pauli

σx ≡
(

0 1
1 0

)

, σy ≡
(

0 −i
i 0

)

, σz ≡
(

1 0
0 −1

)

σiσj = δij + i
∑

k

εijkσk, (~a · ~σ)(~b · ~σ) = ~a ·~b+ i~σ · (~a×~b)

σ†i = σi = σ−1
i , ei

~θ·~σ = cos θ + i(θ̂.~σ) sin θ
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Figure 1 � Se
tion e�
a
e totale mesurée de di�usion pion sur proton [1℄ en fon
tion de la masse

invariante du système.
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TD 2 : Modèle des quarks

4 Fon
tions d'onde

1- Dans SU(3), 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. Le dé
uplet a une fon
tion d'onde symétrique. Quel peut

être son spin ? Comment imaginer que 
ela ne viole pas le prin
ipe de Pauli ?

On a les ∆ dans le dé
uplet. Symétrique en é
hange des quarks, symétrique en spin (don
 3/2). La

fon
tion d'onde de 
ouleur est antisymétrique.

2- E
rire la fon
tion d'onde spin/saveur du proton.

Soit la fon
tion d'onde du proton. La fon
tion d'onde totale du proton s'obtient en 
onstruisant la

fon
tion d'onde symétrique, par exemple, de la façon suivante pour le proton ave
 une proje
tion de

spin +1/2.

|spin〉p =
∣

∣

∣

∣

J =
1

2
, mJ = +

1

2

〉

p

fon
tion d'onde de spin qui peut se réé
rire 
omme le produit de la fon
tion de spin d'une paire de

quarks (uu, par exemple) et de la fon
tion d'onde de spin du quark restant (d i
i).

∣

∣

∣

∣

1

2
,+

1

2

〉

p

=

√

2

3
|1, 1〉uu

∣

∣

∣

∣

1

2
,−1

2

〉

d

− 1√
3
|1, 0〉uu

∣

∣

∣

∣

1

2
,
1

2

〉

d

Les fa
teurs dans l'expression 
i-dessus sont les 
oe�
ients de Clebsh-Gordan pour le 
ouplage d'un

spin 1 ave
 un spin 1/2. La fon
tion d'onde 
orre
te pour un état triplet

|1, 0〉 = 1√
2
(|↑↓〉+ |↓↑〉)

la fon
tion d'onde du proton s'é
rit dans la notation saveur-spin :

∣

∣

∣

∣

1

2
,+

1

2

〉

p

=
∣

∣

∣p↑
〉

=

√

2

3

∣

∣

∣u↑u↑d↓
〉

− 1√
6

∣

∣

∣u↑u↓d↑
〉

− 1√
6

∣

∣

∣u↓u↑d↑
〉

Cette fon
tion est uniquement symétrique pour l'é
hange des deux quarks u, l'expression totalement

symétrique s'obtient en ajoutant les termes dans lesquels le premier et le troisième quark et le deuxième

et le troisième quark ont été é
hangés, soit :

∣

∣

∣p↑
〉

=
1√
18

{

2
∣

∣

∣u↑u↑d↓
〉

+ 2
∣

∣

∣u↑d↓u↑
〉

+ 2
∣

∣

∣d↓u↑u↑
〉

−
∣

∣

∣u↑u↓d↑
〉

−
∣

∣

∣
u↑d↑u↓

〉

−
∣

∣

∣
d↑u↑u↓

〉

−
∣

∣

∣
u↓u↑d↑

〉

−
∣

∣

∣
u↓d↑u↑

〉

−
∣

∣

∣
d↑u↓u↑

〉}

(1)
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Autre méthode :

∣

∣

∣
p↑
〉

=
1√
2
(φ (MS)χ (MS) + φ (MA)χ (MA))

ave


φ (MS) = − 1√
6
(2uud− udu− duu)

χ (MS) = − 1√
6
(2 ↑↑↓ − ↑↓↑ − ↓↑↑)

φ (MA) =
1√
2
(udu− duu)

χ (MA) =
1√
2
(↑↓↑ − ↓↑↑)

φ (MS)χ (MS) =
1

6

(

4
∣

∣

∣
u↑u↑d↓

〉

− 2
∣

∣

∣
u↑u↓d↑

〉

− 2
∣

∣

∣
u↓u↑d↑

〉

− 2
∣

∣

∣
u↑d↑u↓

〉

+
∣

∣

∣
u↑d↓u↑

〉

+
∣

∣

∣
u↓d↑u↑

〉

−2
∣

∣

∣
d↑u↑u↓

〉

+
∣

∣

∣
d↑u↓u↑

〉

+
∣

∣

∣
d↓u↑u↑

〉)

φ (MA)χ (MA) =
1

6
× 3

(∣

∣

∣u↑d↓u↑
〉

−
∣

∣

∣u↓d↑u↑
〉

−
∣

∣

∣d↑u↓u↑
〉

+
∣

∣

∣d↓u↑u↑
〉)

Et don
 :

∣

∣

∣
p↑
〉

=
1

6
√
2

{

4
∣

∣

∣
u↑u↑d↓

〉

+ 4
∣

∣

∣
u↑d↓u↑

〉

+ 4
∣

∣

∣
d↓u↑u↑

〉

− 2
∣

∣

∣
u↑u↓d↑

〉

−2
∣

∣

∣
u↑d↑u↓

〉

− 2
∣

∣

∣
d↑u↑u↓

〉

− 2
∣

∣

∣
u↓u↑d↑

〉

− 2
∣

∣

∣
u↓d↑u↑

〉

− 2
∣

∣

∣
d↑u↓u↑

〉}

On retrouve bien la même expression que 1.

3- Le 
onjugué de 
harge du doublet d'isospin (u, d) est le doublet (−d̄, ū). On 
onsidère l'asso
iation
d'un quark et d'un anti-quark (meson) en se restreignant aux saveurs u, d, s. L'intera
tion forte

respe
te la symétrie de saveur SU(3). Donner le 
ontenu en quarks des mesons π,K, η, η′, et
pré
iser leur position dans un diagramme (Y, I3).
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Y=B+S, don
 pour des mésons on a Y=S. Q = I3 + Y/2. Sur le diagramme 
i-dessous on a I3 en axe

horizontal.

Y = S

I3

Le 
ontenu en quark est :

K0(ds̄)K+(us̄)

π−(dū)π+(−ud̄)
K−(sū)K̄0(−sd̄)

Pour les isospin 3 nul et hyper
harge nulle, on a :

π0 =
1√
2

(

uū− dd̄
)

η8 =
1√
6

(

uū+ dd̄− 2ss̄
)

η1 =
1√
3

(

uū+ dd̄+ ss̄
)

η1 est la 
ombinaison telle que les opérateurs de transition de SU(3) s'annulent :

T±η1 = U±η1 = V±η1 = 0

η8 est la 
ombinaison orthogonale à π0 et à η1
SU(3) est brisée et on a mélange de η8 et η1 :

η = cos θη8 − sin θη1

η′ = sin θη8 + cos θη1

Ave
 θ = −10.1◦, on a η ∼ η8 et η′ ∼ η1

5 Masses et moments magnétiques

1- � Montrer que le moment magnétique du proton s'é
rit µp = 1
3 (4µu − µd), où µu et µd sont les

moments magnétiques respe
tivement des quarks u et d.
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La fon
tion d'onde spin-saveur du proton est donnée dans l'exer
i
e 4.2- . ~µ = q/mc~S ave
 µz =
q~/2mc. Pour les quarks on a µu = 2/3 e~/2muc, µd = −1/3 e~/2mdc et µp = 〈p ↑ |(µ1+µ2+µ3)z|p ↑
〉 = 2/~

∑

i

〈p ↑ |µiSiz|p ↑〉, où Siz est la proje
tion selon z du spin du i-ème quark. On trouve

µp =
1

18
(4× (µu + µu − µd)× 3 + (µu − µu + µd)× 6)

=
1

18
(24µu − 6µd)

=
4

3
µu −

1

3
µd

Pour le neutron, il faut intervertir le 
ontenu en u et en d. On trouve 4/3µu-1/3µd pour le proton et

4/3µd-1/3µu pour le neutron.

� Dans l'approximation mu = md, donner le rapport des moments magnétiques du neutron et

du proton. La valeur expérimentale est

µn
µp

= −0.68497945 ± 0.00000058

µn/µp = −2/3 = −0.666

2- Dans le modèle des quarks, on peut é
rire la masse d'un méson q1q̄2 
omme égale à :

M(q1q̄2) = m1 +m2 +A

−→
S 1 ·

−→
S 2

m1m2

où A = 159 × 4m2
u

~2
MeV/


2
est une 
onstante et

−→
S i le spin d'un quark. En utilisant les masses

habillées suivantes pour les quarks : mu = md = 308 MeV/


2
et ms = 483 MeV/


2
, 
al
uler la

masse des mésons π+,K0, ρ+,K∗0, φ et 
omparer ave
 les valeurs mesurées.

−→
S 1 ·

−→
S 2 = 1

2

(−→
S 2 −−→

S 2
1 −

−→
S 2

2

)

où

−→
S =

−→
S 1 +

−→
S 2. Les quarks ont un spin demi entier don


−→
S 2

i =

1
2

(

1
2 + 1

)

~
2 = 3

4~
2
. Les π+ et K0

sont des pseudos
alaires (S = 0 ⇒ −→
S 2 = 0) et ont don


−→
S 1 ·

−→
S 2 =

−3
4~

2
. Les ρ+,K∗0

et φ sont des ve
teurs (S = 1 ⇒ −→
S 2 = 1(1 + 1)~2 = 2~2) et don


−→
S 1 ·

−→
S 2 = 1

4~
2
.

On trouve :

M(π+) = 2mu + 159× 4m2
u

~2
×−3

4~
2 1
m2

u
= 2mu − 3× 159 = 139MeV ∼ 140MeV

M(K0) = mu +ms − 3× 159mu

ms
= 308 + 483 − 3× 159308

483 = 487MeV ∼ 498MeV

M(ρ+) = 2mu + 159 = 775MeV ∼ 770MeV

M(K∗0) = mu +ms + 159mu

ms
= 892MeV ∼ 896MeV

M(φ) = 2ms + 159m2
u

m2
s
= 1031MeV ∼ 1020MeV

Référen
es

[1℄ D. Gri�ths, Introdu
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les, Wiley Ed., 2008 (
hap 5).
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TD 3 : Intera
tion Faible

Rappels matri
es gamma

Les matri
es γ sont des matri
es 4× 4

γ0 = γ0 ≡
(

I2 0
0 −I2

)

; γi = −γi ≡
(

0 σi
−σi 0

)

γ5 ≡ iγ0γ1γ2γ3

−→
Σ ≡

( −→σ 0
0 −→σ

)

σµν ≡ i

2
(γµγν − γνγµ)

6a ≡ aµγ
µ

Propriétés :

(

γ0
)2

= I4
(

γi
)2

= −I4
(

γ5
)2

= I4
γ0† = γ0 γi† = −γi γ5† = γ5

; γµ† = γ0γµγ0(µ = 0, 1, 2, 3)

Quelques relations :

γµγµ = 4 ; γµγ5 + γ5γµ = 0
γµγν + γνγµ = 2gµν ; 6a 6b+ 6b 6a = 2a · b
γµγνγµ = −2γν ; γµ 6aγµ = −2 6a
γµγνγλγµ = 4gνλ ; γµ 6a 6bγµ = 4a · b
γµγνγλγσγµ = −2γσγλγν ; γµ 6a 6b 6cγµ = −2 6c 6b 6a

Tra
es des matri
es gamma : la tra
e du produit d'un nombre impaire de matri
es γ est nulle.

On a Tr(γµ) = 0;Tr(γ5) = 0;Tr(I4) = 4.

Tr(γµγν) = 4gµν ; Tr(6a 6b) = 4a · b
Tr(γµγνγλγσ) = 4

[

gµνgλσ − gµλgνσ + gµσgνλ
]

;
Tr(6a 6b 6c 6d) = 4 [(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)]
Tr(γ5γµγν) = 0 ; Tr(γ5 6a 6b) = 0

Tr(γ5γµγνγλγσ) = 4iεµνλσ ; Tr(γ5 6a 6b 6c 6d) = 4iεµνλσaµbνcλdσ

Relations ave
 les spineurs :

ū = u†γ0 v̄ = v†γ0

(6p−mc)u = 0 (6p+mc)v = 0
ū(6p−mc) = 0 v̄(6p +mc) = 0
ūu = 2mc v̄v = −2mc

∑

s=↑,↓ u
(s)ū(s) = 6p+mc

∑

s=↑,↓ v
(s)v̄(s) = 6p−mc
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Formules de Casimir :

∑

spina,spinb

[ūaΓ1ub] [ūaΓ2ub]
∗ = Tr

[

Γ1(6pb +mbc)Γ̄2(6pa +mac)
]

∑

spina,spinb

[v̄aΓ1ub] [v̄aΓ2ub]
∗ = Tr

[

Γ1(6pb +mbc)Γ̄2(6pa −mac)
]

∑

spina,spinb

[ūaΓ1vb] [ūaΓ2vb]
∗ = Tr

[

Γ1(6pb −mbc)Γ̄2(6pa +mac)
]

∑

spina,spinb

[v̄aΓ1vb] [v̄aΓ2vb]
∗ = Tr

[

Γ1(6pb −mbc)Γ̄2(6pa −mac)
]

où Γ1 et Γ2 sont des matri
es 4× 4 et où Γ̄i ≡ γ0Γ†
iγ

0

6 Règles de Feynman

6.1 Rappel des règles de Feynman pour QED

Nous rappelons les règles de Feynman pour QED. Pour QCD et l'intéra
tion faible, le s
héma de


al
ul est le même, seules 
hangent les expressions des vertex et des propagateurs. Les vertex pour

toutes les intéra
tions du modèle standard sont donnés dans la se
tion 6.2.

1- A 
haque ligne externe, asso
ier un quadri-ve
teur énergie-impulsion p1, ..., pn et rajouter une

�è
he

1

indiquant la dire
tion positive dans le temps

2

. A 
haque ligne interne asso
ier un quadri-

ve
teur énergie-impulsion q1, ..., qn.

2- Les lignes externes 
ontribuent des fa
teurs :

� Ele
trons

{

Entrant : u flèche vers le vertex
Sortant : ū flèche sortant du vertex

� Positrons

{

Entrant : v̄ flèche sortant du vertex
Sortant : v flèche vers le vertex

� Photons

{

Entrant : ǫµ
Sortant : ǫ∗µ

3- Vertex : Chaque vertex 
ontribue un fa
teur igγµ où g = −q
√

4π/~c où q est la 
harge de la

parti
ule (et non de l'anti-parti
ule). Pour les leptons 
hargés q = −e et don
 g =
√
4πα mais

pour les quarks u on a q=2e/3 et pour les quarks de type d on a q=-e/3

4- Propagateurs : 
haque ligne interne 
ontribue un fa
teur

i(γµqµ +mc)

q2 −m2c2
pour les fermions et

−igµν
q2

pour les photons (ave
 les indi
es se 
ontra
tant ave
 
eux des lignes fermioniques que le

propagateur 
onne
te).

5- Conservation de l'énergie et de l'impulsion : Pour 
haque vertex on é
rit une fon
tion delta de

la forme (2π)4δ4(k1 + k2 + k3) où les k sont les énergies-impulsions entrantes dans le vertex (un

signe moins pour les énergies-impulsions sortantes)

6- Intégrer sur les énergies-impulsions internes : pour 
haque qi é
rire un fa
teur

d4qi
(2π)4

7- Simpli�er la fon
tion δ : Le résultat in
luera un fa
teur (2π)4δ4(p1 + p2..... − pn) 
orrespondant
à la 
onservation énergie-impulsion globale. Simpli�er 
e fa
teur et multiplier par i pour obtenir

M
8- Antisymétrisation : In
lure un signe moins entre deux diagrammes qui ne di�èrent que par

l'é
hange de deux ele
trons (ou positons) entrants (ou sortants), ou par l'é
hange d'un éle
tron

entrant ave
 un positon sortant (ou vi
e-versa).

1. di�érente de la �è
he dénotant le 
ourant fermionique.

2. Cette �è
he du temps permet de distinguer les lignes entrantes des lignes sortantes.
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6.2 Règles de Feynman (à l'arbre)

6.2.1 lignes

ligne externe entrante ligne externe sortante

s
alaire (spin 0) rien rien

fermion (spin

1
2) u ū

anti fermion (spin

1
2) v̄ v

ve
teur (spin 1) ǫµ ǫ∗µ

ligne interne (propagateur)

s
alaire (spin 0)

i

q2 −m2c2

fermion (spin

1
2)

i ( 6q +mc)

q2 −m2c2

ve
teur sans masse (spin 1)

−igµν
q2

ve
teur massif (spin 1)

−igµν + i
qµqν
m2c2

q2 −m2c2

6.2.2 vertex

Les vertex sont tirés de D. Gri�ths, Introdu
tion to Elementary Parti
les, Wiley Ed., 2008 (annex

D.3).

QED
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QCD
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Intéra
tion faible

ENS - Lyon 24 M1 - Symétries et Parti
ules



7 Taux de désintégration du muon

Un muon d'impulsion q se désintègre en eν̄eνµ par l'intera
tion faible. Le µ se transforme en νµ
par l'emission d'un W−

virtuel ( = hors-
ou
he, l'énergie P 0
W et l'impulsion

~P du W sont telle que

(P 0)2 − |~P |2 ≪ m2
W ). Le W se désintègre rapidement en eν̄e. On notera p1, p2 et p3 les 3 impulsions

des parti
ules �nales.

On veut 
al
uler le taux de désintegration du µ. On va négliger les masses des fermions dans l'état

�nal, on travaille dans le réferentiel du µ, et on néglige P 2
par rapport à m2

W dans le propagateur du

W .

1- Dessiner le diagramme de Feynman.
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�

W−
µ−

e−

ν̄e

νµ

2- E
rivez l'élément de matri
e M(µ → eν̄eνµ), en négligeant l'impulsion du W , 
'est à dire, on

utilise l'approximation d' intera
tion de 
onta
t entre quatre fermions gau
hes. Vous obtenez

M(µ → eν̄eνµ) de M(n → pe−ν̄e) (du 
ours).

M(µ → eν̄eνµ) =
GF√
2

[

ūνµγ
σ(1− γ5)uµ

] [

ūeγσ(1− γ5)vνe
]

3- Démontrer une des formules de Casimir.

Je 
onsidère la formule :

A =
∑

spina,spinb

[ūaΓ1vb] [ūaΓ2vb]
∗

Puisque les éléments entre 
ro
hets sont des nombres 
omplexes (matri
e 1× 1), on peut é
rire :

[ūaΓ2vb]
∗ = [ūaΓ2vb]

†

et don


[ūaΓ2vb]
∗ =

[

u†aγ
0Γ2vb

]†

= v†bΓ
†
2γ

0†ua

= v†bΓ
†
2γ

0ua

= v†bγ
0γ0Γ†

2γ
0ua

= v̄bΓ̄2ua

d'où,

A =
∑

spina,spinb

[ūaΓ1vb]
[

v̄bΓ̄2ua
]

=
∑

spina

ūaΓ1





∑

spinb

vbv̄b



 Γ̄2ua

=
∑

spina

ūaΓ1(6pb −mbc)Γ̄2ua
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En utilisant le fait que les spineurs sont à 4 
omposantes et que Q ≡ Γ1(6pb −mbc)Γ̄2 est une matri
e

4× 4, on a :

A =
∑

spina

4
∑

i,j=1

ūaiQijuaj

=
∑

spina

4
∑

i,j=1

Qijuaj ūai

=
4
∑

i,j=1

Qij





∑

spina

uaūa





ji

Le passage de la première à la deuxième ligne 
i-dessus est possible 
ar les 
omposantes sont de simples

nombres et que le produit des nombres est 
ommutatif. À la troisième ligne, on 
onsidère la matri
e

4 × 4 dont l'élément ji est donné par des produits de la 
omposante j de ua par la 
omposante i de
ūa. On pro�te du fait qu'on a 2 sommes sur les indi
es des matri
es 4 × 4 et spineurs pour passer du

produit de matri
e 1× 4 ∗ 4× 4 ∗ 4× 1 à une tra
e d'un produit de matri
e 4× 4 ∗ 4× 4.

A =

4
∑

i,j=1

Qij [ 6pa +mac]ji

= Tr[Q(6pa +mac)]

= Tr[Γ1(6pb −mbc)Γ̄2(6pa +mac)]

4- Mettez l'élément de matri
e au 
arré pour un muon non polarisé.

Pour un muon non polarisé, on doit faire la moyenne sur les 2 états de polarisation du muon (fa
teur

1/2). On doit aussi faire la somme sur tous les états �nals de polarisation (sans faire la moyenne).

D'où,

|M|2 = 1

2

∑

all spins

M∗(µ → eν̄eνµ)M(µ→ eν̄eνµ)

=
G2

F

4

∑

all spins

[

ūνµγ
σ(1− γ5)uµ

] [

ūνµγ
α(1− γ5)uµ

]∗ [
ūeγσ(1− γ5)vνe

] [

ūeγα(1− γ5)vνe
]∗

=
G2

F

4
Tr
[

γσ(1− γ5)(6pµ +mµc)γ
α(1− γ5) 6pνµ

]

Tr
[

γσ(1− γ5) 6pνeγα(1− γ5) 6pe
]
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où on a utilisé :

γα(1− γ5) = γ0
[

γα(1− γ5)
]†
γ0

= γ0(1− γ5†)γα†γ0

= γ0γα†γ0 − γ0γ5†γα†γ0

= γα − γ0γ5γα†γ0

= γα + γ5γ0γα†γ0

= γα + γ5γα

= γα − γαγ5

= γα(1− γ5)

Le terme en mµ 
orrespond à la tra
e du produit d'un nombre impair de matri
e gamma. Sa tra
e est

don
 nulle. Il reste à 
al
uler les tra
es :

Tr
[

γσ(1− γ5) 6pµγα(1− γ5) 6pνµ
]

= pµδ
pνµκTr

[

γσ(1− γ5)γδγα(1− γ5)γκ
]

Tr
[

γσ(1− γ5)γδγα(1− γ5)γκ
]

= Tr
[

γσ(1− γ5)(1 − γ5)γδγαγκ
]

= 2Tr
[

γσ(1− γ5)γδγαγκ
]

= 2Tr
[

(1 + γ5)γσγδγαγκ
]

= 8
(

gσδgακ − gσαgδκ + gσκgδα + iεσδακ
)

Don
,

Tr
[

γσ(1− γ5) 6pµγα(1− γ5) 6pνµ
]

= 8
(

pσνµp
α
µ + pανµp

σ
µ − (pνµ · pµ)gσα + iεσδακpµδ

pνµκ

)

De même

Tr
[

γσ(1− γ5) 6pνeγα(1− γ5) 6pe
]

= 8
(

peσpνeα + peαpνeσ − (pνe · pe)gσα + iεσβατp
β
νep

τ
e

)

Ne sont non nuls que les termes 
orrespondant à la 
ontra
tion de 2 tenseurs symétriques ou de 2

tenseurs antisymétriques. Les produits symétriques donnent :

64
[

2(pνµ · pe)(pµ · pνe) + 2(pνµ · pνe)(pµ · pe)− 4(pνµ · pµ)(pνe · pe) + 4(pνµ · pµ)(pνe · pe)
]

En utilisant εσδακεσβατ = εσαδκεσαβτ = −2(δδβδ
κ
τ − δδτδ

κ
β), les produits antisymétriques donnent :

64
[

2
(

(pνµ · pe)(pµ · pνe)− (pνµ · pνe)(pµ · pe)
)]

et don
 :

|M|2 = G2
F

4
64
[

4(pνµ · pe)(pµ · pνe)
]

= 64G2
F (pνµ · pe)(pµ · pνe)
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5- L'espa
e de phase à n parti
ules en sortie est donné par l'expression :

d3nΦn(q; p1, p2, . . . , pn) = (2π)4 δ4

(

q −
n
∑

i=1

pi

)

n
∏

i=1

d3~pic
3

(2π)3 2Ei

où pi = (Ei, c~pi) est le quadrive
teur d'une parti
ule sortante et q est le quadrive
teur de l'état

initial. On rappelle que pour une parti
ule de masse m,

∫

d4pδ
(

p2 −m2c4
)

=
d3~pc3

2E
. La largeur

de désintégration du muon en unité naturelle (c = 1, ~ = 1) dans son référentiel est donnée par

dΓ(µ → eν̄eνµ) =
|M|2
2mµ

dΦ3,

Toutes les parti
ules de l'état �nal ont une masse nulle. On a :

dΓ(µ → eν̄eνµ) =
|M|2
2mµ

[

(2π)4δ4 (q − p1 − p2 − p3)
d3~p3

2E3(2π)3

]

d3~p2
2E2(2π)3

d3~p1
2E1(2π)3

=
|M|2
2mµ

[

(2π)4δ4 (q − p1 − p2 − p3)
d4p3
(2π)4

δ(p23)2π

]

d3~p2
2E2(2π)3

d3~p1
2E1(2π)3

=
|M|2
2mµ

(2π)δ
(

(q − p1 − p2)
2
) E1dE1dΩ1

2(2π)3
E2dE2dΩ2

2(2π)3

Il est utile de dé�nir xi = 2Ei/mµ. Véri�er que dans 
e 
as

pi · pj =
m2

µ

2
(1− xk)

pour i 6= j 6= k.

pi · pj =
1

2
(pi + pj)

2 − p2i − p2j =
1

2
(pµ − pk)

2 =
m2

µ

2
(1− 2

pk · pµ
m2

µ

+
p2k
m2

µ

) =
m2

µ

2
(1− 2

Ek

mµ
)

Dans le reférentiel où le muon est au repos pµ = (mµ,~0) don
 pk · pµ = Ekmµ

On néglige les masses des parti
ules sortantes don
 p2i = p2j = p2k = m2 = 0
La 
onservation de l'énergie-impulsion implique pµ = p1 + p2 + p3

6- Expliquer pourquoi xi doit être 
ompris entre 0 et 1.

L'énergie minimale d'un produit de sortie est nulle. L'énergie maximale disponible est la masse du

muon mais la 
onservation de l'impulsion implique qu'une seule parti
ule ne peut en emporter qu'au

plus la moitié.

7- Montrer que |M|2 ne dépend pas des dire
tions des parti
ules �nales dans le référentiel propre

du muon.
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|M|2 est proportionnel à (pνµ · pe)(pµ · pνe) et pµ = pνµ + pe + pνe . Dans le référentiel propre du muon,

pµ · pνe = mµEνe et

(

pνµ + pe
)2

= m2
e + 2pνµ · pe

= 2pνµ · pe
= (pµ − pνe)

2

= m2
µ − 2pµ · pνe

où on a négligé la masse de l'éle
tron. On en déduit que pνµ · pe =
m2

µ

2
− pµ · pνe =

m2
µ

2
−mµEνe et

don
 :

|M|2 = 64G2
F (pνµ · pe)(pµ · pνe)

= 64G2
F

(

m2
µ

2
−mµEνe

)

mµEνe

= 64G2
Fm

2
µEνe

(mµ

2
− Eνe

)

ne dépend d'au
un angle.

8- On peut faire les intégrales sur les angles de dΓ(µ → eν̄eνµ) en utilisant la fon
tion δ restante.
La dire
tion de ~p1 est libre (peut servir pour dé�nir l'axe des z), don


∫

dΩ1 → 4π. On dé�nit

cos θ2 tel que ~p1 · ~p2 = E1E2 cos θ2, don
 (NB :

∫

dφ2 → 2π )

dΓ(µ → eν̄eνµ) =
|M|2
2mµ

δ(m2
µ(1− (x1 + x2) +

x1x2
2

(1− cos θ2))
(4π)(2π)

4(2π)5
E1dE1E2dE2d cos θ2

=
|M|2
2mµ

1

2(2π)3
E1dE1E2dE2

2

m2
µx1x2

=
|M|2
2mµ

1

4(2π)3
dE1dE2 =

|M|2mµ

32(2π)3
dx1dx2

9- Montrer que 1− x1 ≤ x2 ≤ 1 ≤ 2− x1.

0 = (q − p1 − p2)
2

= m2
µ − 2mµE1 − 2mµE2 + 2p1 · p2

= m2
µ(1− x1 − x2 + (1 − x3))

= m2
µ(2− x1 − x2 − x3)

Don
, x1 + x2 + x3 = 2 et 
haque xi doit être entre 0 et 1. Don
,

0 ≤ x3 ≤ 1

1 ≤ 2− x3 ≤ 2

1 ≤ x1 + x2 ≤ 2

1− x1 ≤ x2 ≤ 2− x1

Comme 0 ≤ x1 ≤ 1, 2− x1 ≥ 1.
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10- Montrer que |M|2 = 16G2
Fm

4
µx1(1− x1). Pré
iser quelle parti
ule est la parti
ule 1.

En prenant pour parti
ule 1, le ν̄e, on a d'après les questions pré
édentes :

|M|2 = 64G2
Fm

2
µE1

(mµ

2
− E1

)

= 64G2
Fm

2
µmµx1

1

2

(mµ

2
− mµ

2
x1

)

= 16G2
Fm

4
µx1(1− x1)

11- Obtenez

Γ =
G2

Fm
5
µ

192π3

dΓ(µ→ eν̄eνµ) =
|M|2mµ

32(2π)3
dx1dx2 =

G2
Fm

5
µx1(1− x1)

2(2π)3
dx1dx2

Γ =

∫ 1

0

m5
µG

2
F (1− x1)x1

16π3
dx1

∫ 1

1−x1

dx2

=
m5

µG
2
F

16π3

∫ 1

0
(1− x1)x

2
1dx1

=
m5

µG
2
F

16π3

[

x31
3

− x41
4

]1

0

=
m5

µG
2
F

16π3
1

12

=
m5

µG
2
F

192π3

12- Quelle est son temps de vie en se
ondes ?

τµ = Γ−1 =
192π3 × 6.58212 10−25GeV s

(0, 105GeV)5 × (1.166 10−5GeV−2)2
= 2.2 10−6

s (il faut réintroduire ~ pour les unités)
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TD 4 : Les bosons faibles

8 Le quadri-ve
teur polarisation

On 
onsidère un référentiel dans lequel le W a un quadrive
teur énergie-impulsion

kµ =

(

Ek =

√

∣

∣

∣

~k
∣

∣

∣

2
+M2, 0, 0, |~k|

)

La polarisation peut se dé
rire par 3 quadrive
teurs de polarisation : deux dé
rivent les polarisations

transverses : ε
(1)
µ et ε

(2)
µ et le dernier ε

(3)
µ dé
rit la polarisation longitudinale. Ces ve
teurs s'é
rivent

dans le référentiel mentionné 
i-dessus :















ε
(1)
µ (~k) = (0, 1, 0, 0)

ε
(2)
µ (~k) = (0, 0, 1, 0)

ε
(3)
µ (~k) =

(

|~k|
M , 0, 0, Ek

M

)

Pour obtenir l'expression des quadrive
teurs dans d'autres référentiels, il faut faire une transforma-

tion de Lorentz.

Ces quadrive
teurs véri�ent les relations :

ε(n)µ εµ(m) = −δnm

3
∑

n=1

ε(n)µ ε(n)ν = −gµν +
kµkν
M2

ε(n)µ kµ = 0

Ces formules sont valables pour tout ve
teur massif (W , Z)

9 Taux de désintégration du W

La largeur de désintegration d'un boson Z ou W vers une paire de fermion anti-fermion de masse

négligeable est

Γ =
1

64π2MW

∫

dΩ |M|2,

1- A partir du 
ouplage entre le W , le e et le ν̄ : −i g

2
√
2
γµ
(

1− γ5
)

et en négligeant les masses des

fermions, démontrer que

|M|2 =
g2

3

(

−gµν +
qµqν

M2
W

)

[kµ1 k
ν
2 + kν1k

µ
2 − (k1 · k2)gµν ] ,

(k1 et k2 sont les impulsions du e et ν̄ sortant). Pour ça

� vous utiliserez des identités de tra
es ave
 matri
es γ 
omme :

Tr[γµ 6p1γν 6p2] = 4[pµ1p
ν
2 + pν1p

µ
2 − (p1 · p2)gµν ]

Tr[γµγνγργσγ5] = 4iǫµνρσ

(2)

� vous utiliserez que la somme sur les polarisations du W est

∑

λ ǫ
(λ)∗
µ ǫ

(λ)
ν = −gµν + qµ qν

M2
W

(q = k1 + k2 étant l'impulsion du W ).
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Pour un W de polarisation (λ), on obtient pour un élément de matri
e :

iM = −i g

2
√
2
ǫ(λ)µ (q)

[

ūe(k1)γ
µ(1− γ5)vν̄e(k2)

]

|M|2 = g2

8
ǫ(λ)µ (q)ǫ(λ)∗ν (q)

∑

sν̄e

∑

se

[

ūe(k1)γ
µ(1− γ5)vν̄e(k2)

] [

ūe(k1)γ
ν(1− γ5)vν̄e(k2)

]∗

En utilisant les formules de Casimir, on obtient :

|M|2 = g2

8
ǫ(λ)µ (q)ǫ(λ)∗ν (q)Tr

[

γµ(1− γ5)(6k2 −mν̄e)γ
ν(1− γ5)(6k1 +me)

]

Et en négligeant les masses des fermions :

|M|2 = g2

8
ǫ(λ)µ (q)ǫ(λ)∗ν (q)Tr

[

γµ(1− γ5) 6k2γν(1− γ5) 6k1
]

=
g2

8
ǫ(λ)µ (q)ǫ(λ)∗ν (q)Tr

[

γµ2(1 − γ5) 6k2γν 6k1
]

=
g2

4
ǫ(λ)µ (q)ǫ(λ)∗ν (q)Tr

[

(1 + γ5)γµ 6k2γν 6k1
]

= g2ǫ(λ)µ (q)ǫ(λ)∗ν (q) [kµ1 k
ν
2 + kν1k

µ
2 − (k1 · k2)gµν + iǫµρνσk2ρk1σ]

Pour un W non polarisé, il faut faire la moyenne sur les 3 états possibles de polarisation :

|M|2tot =
1

3

∑

λ

g2ǫ(λ)µ (q)ǫ(λ)∗ν (q) [kµ1 k
ν
2 + kν1k

µ
2 − (k1 · k2)gµν + iǫµρνσk2ρk1σ ]

=
g2

3

(

−gµν +
qµ qν
M2

W

)

[kµ1 k
ν
2 + kν1k

µ
2 − (k1 · k2)gµν + iǫµρνσk2ρk1σ ]

=
g2

3

(

−gµν +
qµ qν
M2

W

)

[kµ1 k
ν
2 + kν1k

µ
2 − (k1 · k2)gµν ]

où on a utilisé le fait que la 
ontra
tion d'un tenseur symétrique ave
 un tenseur antisymétrique est

nulle.

2- Montrer que |M|2tot =
g2

3
M2

W

|M|2tot =
g2

3

(

−2(k1 · k2) + 4(k1 · k2) +
2(q · k1)(q · k2)− (k1 · k2)q2

M2
W

)

=
g2

3

(

2(k1 · k2) +
2(q · k1)(q · k2)− (k1 · k2)q2

M2
W

)

Dans le C.M. du W , on a q = (MW , 0, 0, 0), k1 = MW

2 (1, 0, 0, 1) et k2 = MW

2 (1, 0, 0,−1) et don


k1 · k2 = q · k1 = q · k2 = M2
W

2 et q2 =M2
W et le terme en 1/M2

W s'annule.

⇒ |M|2tot =
g2

3
M2

W

3- Démontrer que

Γ(W → eν̄) =
g2

48π
MW .
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(négliger les masses des fermions)

Γ = 1
64π2 MW

∫

dΩ
g2M2

W

3 = 1
64π2

4πg2MW

3 = g2MW

48π

4- Plus généralement le vertex 
orrespondant à la désintégration d'un boson ve
teur

X en deux fermions de spin

1
2 , f1 et f̄2 est −igX 1

2γ
µ(cV − cAγ

5). Montrer que

Γ(X → f1f̄2) =
g2X
48π (c

2
V + c2A)MX .

Dans la tra
e pré
édente, on rempla
e le 
al
ul de (1 − γ5)2 = 2(1 − γ5) par (cV − cAγ
5)2 = (c2V +

c2A)− 2cV cAγ
5
Le terme ave
 γ5 donnera une tra
e en ǫµρνσ qui s'annulera ave
 la 
ontra
tion ave
 le

tenseur symétrique −gµν +
qµ qν
M2

X

. On aura don
 un fa
teur de 
orre
tion de

c2V + c2A
2

. Dans l'expression

du vertex, on a

gX
2

au lieu de

g

2
√
2

e qui au 
arré o

asione un fa
teur

2g2X
g2

, don
 le résultat est

modi�é par un fa
teur

g2X(c2V + c2A)

g2
. Au �nal, dans l'expression de Γ(W → eν̄), il faut rempla
er g2

par g2X(c2V + c2A) et MW par MX

⇒ Γ =
g2X
48π

(c2V + c2A)MX

Boson gX "cA", "cV "

W g√
2

1

Z g
cos θW

voir tableau 
i-
ontre

Couplage au Z :

fermion cA cV
νe, νµ, ντ

1
2

1
2

e−, µ−, τ− −1
2 −1

2 + 2 sin2 θW
u,
,t

1
2

1
2 − 4

3 sin
2 θW

d,s,b −1
2 −1

2 +
2
3 sin

2 θW

5- 
al
uler la valeur numérique du taux de désintegration du W vers une génération de leptons, en

prenant α = e2/4π = 1/128, mW = 80, 450 GeV, et g = e/ sin θW , ave
 sin2 θW = 0.232. Que
sera le taux de désintegration total duW , sa
hant qu'il y a trois générations de quarks et leptons ?

ΓW→lν = e2MW

48π sin2 θW
= αMW

12 sin2 θW
= 80.45

128·12·0.232GeV = 226MeV

ΓW→ūd = ΓW→c̄s = 3ΓW→lν ⇒ ΓW = 3(ΓW→lν + 2ΓW→lν) ≃ 2GeV

6- Cal
ulez les largeurs partielles Γ(Z → νeν̄e) pour une masse du Z de 90 GeV. ( gZ =
e/(sin θW cos θW ) )

ΓZ→νeν̄e = e2

48π sin2 θW cos2 θW
MZ

(

(

1
2

)2
+
(

1
2

)2
)

= e2

96π sin2 θW cos2 θW
MZ = α

24 sin2 θW (1−sin2 θW )
MZ =

164MeV

7- Cal
ulez les largeurs partielles pour les désintégrations Z → e+e−, ūu, d̄d. N'oubliez pas de tenir

ompte de la 
ouleur. Prédire la largeur totale du Z dans le 
adre du modèle standard.
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fermion cA cV c2A + c2V ΓZ→ff̄ (MeV)

νe, νµ, ντ
1
2

1
2

1
2 164

e−, µ−, τ− −1
2 −1

2 + 2 sin2 θW ≃ −0.03 0.25 82

u,


1
2

1
2 − 4

3 sin
2 θW ≃ 0.19 0.29 95

d,s,b −1
2 −1

2 +
2
3 sin

2 θW ≃ −0.34 0.37 121

ΓZ = 3(ΓZ→νeν̄e + ΓZ→e+e− + 2ΓZ→ū+u + 3ΓZ→d̄+d)=2.4GeV
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M1 - ENS Lyon

Symétries et Parti
ules

Année 2014 - 2015- Semestre 2b

Arti
le 1 : K2 → 2π

10 Symétries C, P et T

1- Pré
iser le moment orbital et le spin des mesons π0 (JPC = 0−+), ρ0 (JPC = 1−−) et a1
(JPC = 1++).

Pour les mésons P = (−1)L+1
, donne la parité de L et C = (−1)S+L

donne 
elle de L+S. Don
 on a :

Particule L+ S L S

π0 pair 0 0
ρ0 impair 0 1
a1 pair 1 1

2- Le η se désintègre prin
ipalement en η → 2γ(39%), η → 3π(56%),η → ππγ(5%). Pourquoi
le mode en 2π est-il interdit ? Pouvez-vous expliquer pourquoi le mode en 3π a un rapport

d'embran
hement 
omparable au mode en 2γ ? Données :π±(IG(JP ) = 1−(0−)), π0(IG(JPC) =
1−(0−+)), η(IG(JPC) = 0+(0−+)), γ(JPC = 1−−).

La parité G = C · R2 où R2 
orrespond à une rotation de 180

o
autour de l'axe 2 d'isospin. Cela


orrespond à transformer I3 en -I3. En général la valeur propre de G est pour les mésons (−1)S+L+I
.

Les intera
tions fortes 
onservent la parité G. Le η a L=0, S=0 et JPC = 0−+
et I=0. Le η est un état

propre de G de valeur propre +1. Le pion est un triplet d'isospin, mais a les mêmes autres nombres

quantiques. Le π est un état propre de G de parité -1.

Parité de 2π=+1 et la parité de l'η est -1. Comme L et S=0 pour le π, pas possible de 
onstruire une
état de L=1 qui donne J=0. Impossible par intera
tion éle
tromagnétique et forte.

Parité de 3π=-1, mais G = (−1)3 = −1 alors qu'elle vaut +1 pour η don
 pas OK pour les intera
tions

fortes. : seules les intera
tions éle
tromagnétiques sont permises.

C(2γ) = (−1)2 = 1 Ok Pγ = −1 mais P (2γ) ∗ (−1)L=-1, ave
 L=1 est possible 
ar Sγ = 1, don
 on
peut avoir J=0 ave
 L=1 et S=1, la désintégration éle
tromagnétique est possible.

11 Symétrie CP

1- En étudiant la désintégration du muon (µ− −→ e−ν̄eνµ) et en vous rappelant qu'il n'existe que

des neutrinos d'héli
ité gau
he et des anti-neutrinos d'héli
ité droite, montrez que si P̂ et Ĉ sont

brisées par l'intera
tion faible, la 
ombinaison ĈP̂ est, a priori, 
onservée.

Si on applique Ĉ à 
ette réa
tion, on transforme les neutrinos d'héli
ité gau
he en anti-neutrinos

de même héli
ité 
e qui est impossible. De même, l'appli
ation de P̂ 
onserve la 
harge mais inverse

l'héli
ité 
e qui est également impossible. Par 
ontre, l'appli
ation de ĈP̂ va donner les bonnes héli
ités.
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2- Les kaons neutres produits par intera
tion forte ne sont pas états propres de la 
ombinaison de

symétries dis
rètes ĈP̂ . On pose

3

que Ĉ|K̄0〉 = |K0〉, et on rappelle que les kaons neutres ont

une parité intrinsèque négative.

a) Dé�nissez les états propres de CP , K0
1 et K0

2 , à partir des états propres de l'intera
tion

forte K0
et K̄0

, en 
hoisissant 
omme 
onvention :

ĈP̂ |K0
1 〉 = +|K0

1 〉 et ĈP̂ |K0
2 〉 = −|K0

2 〉.

On a

ĈP̂ |K0〉 = −|K̄0〉
puisque les kaons neutres ont une parité négative. On peut poser

ĈP̂
1√
2

(

|K0〉+ |K̄0〉
)

=
1√
2

(

−|K̄0〉 − |K0〉
)

ĈP̂
1√
2

(

|K0〉 − |K̄0〉
)

=
1√
2

(

−|K̄0〉+ |K0〉
)

don


|K0
1 〉 =

1√
2

(

|K0〉 − |K̄0〉
)

et |K0
2 〉 =

1√
2

(

|K0〉+ |K̄0〉
)

b) Quelles sont les désintégrations possibles des kaons neutres ? A quels états propres de ĈP̂

orrespondent-elles ?

Les kaons neutres se désintègrent prin
ipalement en π0 + π0 ou en π+ + π−. É
rivons la 
onservation

du moment 
inétique dans 
es désintégrations. On a :

~JK = ~Jπ + ~Jπ +~lπ,π ⇐⇒ ~0 = ~0 +~0 +~lπ,π

soit

~lπ,π = 0. La parité de 
es états �naux est donnée par 
elle du moment angulaire don
 
es états

sont pairs. De plus, ils sont états propres de Ĉ ave
 la valeur propre +1 (π0 + π0) ou (−1)l = +1
(π+ + π−). Ils sont don
 états propres de ĈP̂ ave
 la valeur propre +1.
Les modes de désintégration à trois pions sont eux états propres de ĈP̂ ave
 la valeur propre -1. Si on


onserve ĈP̂ , K0
1 peut don
 se désintégrer en 2π 
e qui n'est pas le 
as de K0

2 .


) Pourquoi asso
ie-t-on K0
L à K0

2 et K0
S à K0

1 ? Comment se manifeste la brisure de ĈP̂ et en

quoi 
ela a�e
te-t-il la dé�nition des états K0
L et K0

S ?

3. En fait, 
'est une 
onvention. On peut aussi poser : Ĉ|K̄0〉 = −|K0〉, mais alors il faut 
hanger les dé�nitions de

K0
1 et K0

2 qui en dé
oulent.
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La désintégration en 3π est beau
oup plus longue que la désintégration en 2π. La durée de vie de K0
2

est don
 beau
oup plus grande que 
elle de K0
1 
e qui explique l'identi�
ation de 
es parti
ules à K0

L

et K0
S . La brisure de ĈP̂ se traduit par la possibilité de K0

L de se désintégrer en 2π. On peut don


é
rire

|K0
L〉 ≈ |K0

2 〉+ ε|K0
1 〉

à un (petit) fa
teur de normalisation près.

12 Produ
tion et régéneration des mésons K neutres.

Les mésons les plus légers sont les mésons π et K, de massemπ ≃ 140MeV/c2 etmK ≃ 500MeV/c2.
Les baryons les plus légers sont les nu
léons, le Λ et les Σ, de masse mN ≃ 940MeV/c2 , mΛ ≃
1115MeV/c2 et mΣ ≃ 1190MeV/c2 . On rappelle les étrangetés de 
es parti
ules :

S(Λ) = S(Σ+) = S(Σ0) = S(Σ−) = −1

S(K0) = S(K+) = +1

S(K̄0) = S(K−) = −1

1- Quels sont les 
ouples parti
ule/anti-parti
ule ?

Les 
ouples parti
ule/anti-parti
ule sont (K0, K̄0) et (K+,K−). Attention, les Σ±
ont tous les deux

des étrangetés de -1 et ne sont pas anti-parti
ules l'un de l'autre.

2- E
rire les réa
tions de produ
tion des mésons K+
et K0

à partir d'un fais
eau de pions. E
rire

les réa
tions de produ
tion des mésons K−
et des K̄0

.

On 
onsidère les di�érentes réa
tions permettant de produire des K. On va montrer que les réa
tions

faisant intervenir des K0,+
permettent de ne faire intervenir qu'une seule parti
ule supplémentaire

alors que deux parti
ules sont né
essaires pour la 
réation des K−, K̄0
.

Réa
tion Ci → Cf Bi → Bf Ei → Ef CX BX EX

π− + p→ K0 +X −1 + 1 → 0 + CX 0 + 1 → 0 +BX 0 + 0 → +1 + EX 0 +1 −1
π− + p→ K+ +X −1 + 1 → +1 + CX 0 + 1 → 0 +BX 0 + 0 → +1 + EX −1 +1 −1
π− + p→ K̄0 +X −1 + 1 → 0 + CX 0 + 1 → 0 +BX 0 + 0 → −1 + EX 0 +1 +1
π− + p→ K− +X −1 + 1 → −1 + CX 0 + 1 → 0 +BX 0 + 0 → −1 + EX +1 +1 +1

Dans le tableau 
i-dessus Ci est la 
harge éle
trique. Quelles sont les parti
ules ave
 une étrangeté de

−1 ? On a Σ+,0,−
, Λ. Pour la première réa
tion, on peut produire un Λ ou un Σ0

qui ont tous les deux

une 
harge nulle et un nombre baryonique de +1. Pour la se
onde réa
tion, on peut produire un Σ−

qui a la bonne 
harge et le bon nombre baryonique.

Qu'en est-il pour les deux dernières équations ? On doit produire une parti
ule d'étrangeté +1 
'est à

dire K0,+
ou Σ̄. Cependant 
es parti
ules n'assurent pas la 
onservation du nombre baryonique et ne

peuvent don
 être produites seules.

3- On veut produire des mésons K+
ou K0

en bombardant de la matière par un fais
eau de π.
Quelle énergie doit on 
hoisir si on veut éviter de produire aussi des K−

et des K̄0
.
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Comme démontré à la question pré
édente, les réa
tions que l'on peut 
onsidérer sont

π− + p → K0 + Λ π− + p → K+ +Σ−

π− + p → K̄0 +K0 + n π− + p → K+ +K− + n

Les réa
tions indiquées sur la première ligne fournissent des parti
ules dont la masse est plus faible que


elles produites dans les réa
tions de la se
onde ligne. Ainsi, 
es réa
tions possèdent une énergie seuil

plus faible. Si on utilise des pions ave
 une énergie intermédiaire, on ne peut produire que des K+
et

des K0
et pas des K−

et des K̄0
.

Cal
ulons les énergies des réa
tions de 
réations de deux et trois parti
ules. On utilise la masse invari-

ante entre le référentiel du laboratoire avant la réa
tion et le référentiel du 
entre de masse après la

réa
tion. On a don


a

Mi =
(

∑

Ei

)2
−
(

∑

~pi

)2

= (Tπ +mπ +mp)
2 − p2π

= (Tπ +mπ +mp)
2 − Tπ(Tπ + 2mπ)

= (mπ +mp)
2 + 2Tπmp

alors que

Mf =
(

∑

mi

)2

pour l'énergie 
orrespondant à l'énergie seuil. Dans le 
as de la réa
tion π−+ p→ K++Σ−
, on trouve

T=
(mK +mΣ)

2 − (mπ +mp)
2

2mp
=

(500 + 1190)2 − (140 + 940)2

2× 940
≈ 899 MeV

alors que pour π− + p→ K̄0 +K0 + n, on obtient

Tπ =
(mK̄ +mK +mn)

2 − (mπ +mp)
2

2mp
=

(500 + 500 + 940)2 − (140 + 940)2

2× 940
≈ 1, 38 GeV

Il existe une large plage d'énergies des pions in
idents qui ne donnent que les parti
ules désirées.

a. On a

p
2
π = E

2
π −m

2
π = (Eπ −mπ)(Eπ +mπ) = Tπ(Tπ + 2mπ)

4- Dans le système des kaons neutres, on a Ĉ|K̄0〉 = |K0〉, Les états propres de ĈP̂ sont dé�nis par

ĈP̂ |K0
1 〉 = +|K0

1 〉 et ĈP̂ |K0
2 〉 = −|K0

2 〉.
Soit

|K1〉 =
1√
2
(|K0〉 − |K̄0〉) et |K̄2〉 =

1√
2
(|K0〉+ |K̄0〉)

Si on produit des fais
eau de K0
, les K1 vont se désintégrer plus vite. On doit don
 observer des

désintégrations en 2π près de la sour
e et des désintégrations en 3π loin de la sour
e (Gell-Mann

& Pais, 1955). Le K2 a été observé à BNL en 1956 (Lederman et al.). τ1 = 0.895 × 10−11
s

(cτ = 2.68 
m) et τ2 = 5.11−8
s (cτ = 15.34 m!)

Le mélange entre K0
et K̄0

est possible 
ar l'intéra
tion faible ne 
onserve ni l'isospin ni l'é-

trangeté. Dessiner des diagrammes de Feynman représentant la transformation d'un K0 en K̄
0
.
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5- Quel est le prin
ipe de fon
tionnement d'un �régénérateur de K0
S� ?

Le fais
eau de K0
peut s'interpréter 
omme un fais
eau 
omposé à part égale de |K0

1 〉 et de |K0
2 〉.

Après une propagation sur une distan
e importante, les |K0
1 〉 dont la durée de vie est beau
oup plus


ourte ont disparu. Dès qu'on introduit un é
ran sur le trajet de 
e fais
eau, il faut repasser dans la

base K0, K̄0
qui est la bonne base vis à vis de l'intera
tion forte. L'état entrant dans le régénérateur

est

|Xin〉 = |K0
2 〉 =

1√
2
(|K0〉+ |K̄0〉)

A la sortie du régénérateur, on obtient un état |Xout〉 tel que

|Xout〉 = 1
√

|f |2 + |f̄ |2
(f |K0〉+ f̄ |K̄0〉) = 1

√

|f |2 + |f̄ |2

(

f + f̄√
2

|K0
2 〉+

f − f̄√
2

|K0
1 〉
)

où f et f̄ sont les transmissions des K0
et des K̄0

à travers le régénérateur.

On peut obtenir à la sortie une quantité importante de |K0
1 〉 si f et f̄ sont très di�érentes.
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Symétries et Parti
ules

Année 2014 - 2015- Semestre 2b

Arti
le 2 : La dé
ouverte du J/ψ

13 Introdu
tion

L'arti
le proposé est l'un des deux arti
les publiés en même temps, annonçant la dé
ouverte d'une

résonan
e min
e pouvant s'interpréter 
omme une résonan
e cc̄.
Cette dé
ouverte a valu le prix Nobel aux deux représentants des groupes expérimentaux : Burton

Ri
hter[2℄ et Samuel C. C. Ting[1℄ en 1976. Cette dé
ouverte s'est faite simultanément au SPEAR,


ollisionneur e+e− du SLAC en Californie et à l'AGS, syn
hrotron à protons du laboratoire national

de Brookhaven (BNL) dans l'état de New York dans une expérien
e de type 
ible �xe où un fais
eau

de protons était envoyé sur une 
ible de Beryllium.

Nous étudierons en parti
ulier l'arti
le du groupe de S.C.C. Ting [1℄ dont la des
ription expéri-

mentale est un peu plus fournie. Au
un des deux groupes ne re
her
hait un quatrième quark.

Les résonan
es, aujourd'hui appelées mésons ve
teurs ρ, ω, φ, avaient été dé
ouvertes à des masses

de l'ordre de 1 GeV et des largeurs Γρ=100 MeV, Γω=10 MeV, Γφ=5 MeV. Toutes avaient J(spin)=1,

C(Conjugaison de 
harge)=-1 et P (parité)=-1, 
omme le photon, elles étaient 
onsidérées 
omme

des photons massifs ! Le groupe de S.C.C. Ting re
her
hait 
es �photons� et voulait isoler leur dés-

intégration en e+e− (quel est leur rapport de bran
hement dans 
e mode ?) pour étudier 
omment la

photoprodu
tion de 
es résonan
es suivie de la désintégration en e+e− interférait ave
 la produ
tion

dire
te de paires γ → e+e−, a�n de mesurer l'amplitude de produ
tion de 
es résonan
es. Ils étudi-

aient 
es résonan
es dans un fais
eau de 1011γ/s à DESY à l'aide d'un spe
tromètre permettant une

résolution en masse de 5 MeV/


2
permettant aussi de distinguer les paires e+e− des paires de π+π−

ave
 un pouvoir dis
riminant ≫ 108.[3℄ (D'où vient 
ette né
essité ? )

Taux de bran
hement :

e+e− pions

ρ 4.510−5
0.989

ω 7.310−5
0.98

φ Γ = 1.27 keV Γ = 4.26 MeV

D'où la né
essité de dis
riminer entre

π+π− et e+e−.

La question du nombre de "photons massifs" de 
e type, motiva la 
onstru
tion d'une nou-

velle expérien
e auprès de l'a

élérateur AGS de protons de 28.5 GeV de BNL a�n de traquer de

nouvelles résonan
es de 
e type jusqu'à des masses de 5 GeV, produite lors d'intera
tions fortes

p+ p→ V 0+X → e+e−+X (où V 0
est utilisé pour représenter une parti
ule neutre qui se désintègre

ave
 une topologie observée dans le déte
teur qui ressemble à la lettre V).

C'est 
e dispositif qui va permettre la dé
ouverte du J .
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14 Un peu d'histoire

14.1 Angle de Cabibbo

En 1963, Cabibbo avait introduit le doublet u, d' pour tenir 
ompte de la désintégration des

parti
ules étranges [4℄. En suggérant que les quarks états propres de propagation (masse) étaient

di�érents des états propres de l'intera
tion faible, 
ela permettait d'expliquer les désintégrations du

type K+ → µ+νµ, sans remettre en 
ause le s
héma organisant les fermions gau
hes en doublets de

l'intera
tion faible

(

νe
e−

)

,

(

νµ
µ−

)

,

(

u
d

)

, dont les seules transitions possibles étaient entre les

membres d'un même doublet.

Cabibbo fait l'hypothèse que le 
ourant faible 
ouple au doublet

(

u
d′

)

tel que :

{

d′ = d cos θc + s sin θc
s′ = −d sin θc + s cos θc

.

Le rapport des largeurs partielles

Γ (K+ → µ+νµ)

Γ (π+ → µ+νµ)
∼ tan2 θc 
orrespond à un angle θc de 13.15

◦
.

K+















�

W+

u

s̄

µ+

νµ

Figure 2 � Désintégration K+ → µ+νµ

14.2 Mé
anisme de Glashow - Iliopoulos - Maiani

Les prédi
tions de taux de désintégration du K0 → µ+µ− si l'on ne 
onsidère que les transitions

u↔ d′ sont beau
oup plus élevées que l'observation expérimentale

Γ
(

K0
L → µ+µ−

)

Γtot
(

K0
L

) = (9.1±1.9)·10−9
.

L'introdu
tion d'un quark 
, 
omplétant un doublet faible ave
 le s', rendait un nouveau diagramme

possible, dont l'amplitude aurait annulé totalement le diagramme déjà imaginé, si 
e n'avait été pour

la di�éren
e de masse des quarks u et 
. En 1970, Glashow - Iliopoulos - Maiani prédisent l'existen
e

d'un quatrième quark [5℄.

K0
L















�

u

W

W

νµ

d

s̄

µ+

µ−

K0
L















�




W

W

νµ

d

s̄

µ+

µ−

M ∼ cos θc sin θc M ∼ − cos θc sin θc

Figure 3 � Deux 
ontributions à la désintégration K0 → µ+µ−

Ce mé
anisme n'a pas été pris au sérieux avant la dé
ouverte en 1974 de la résonan
e cc̄, 
ar il
né
essitait l'invention d'une nouvelle parti
ule, pour régler un problème parti
ulier d'une théorie qui

demandait en
ore largement à être validée par l'expérien
e.

Entretemps, Kobayashi et Maskawa avaient déjà théoriquement introduit une 3

eme
famille de quarks,
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seule façon d'introduire une phase 
omplexe dans la matri
e de rotation de Cabibbo, phase qui per-

mettait d'introduire naturellement la violation de CP dans les intera
tions faibles.

15 Dispositif expérimental

La zone expérimentale ave
 les arrivées de fais
eau est s
hématisée sur la �gure 4. Le déte
teur de

l'expérien
e est entouré et agrandi sur la �gure 5.

Les deux plans de déte
tion jouent un r�le di�érent. Les aimants (notés M pour "magnet") dé�é
hissent

Figure 4 � Le hall expérimental est auprès de l'AGS. L'expérien
e 598, entourée, est au bout de la

station A

les parti
ules 
hargées dans le plan verti
al. Pour pouvoir les suivre et mesurer leur quantité de mouve-

ment, le dispositif est in
liné verti
alement de 10.33

◦
. Le déte
teur est 
omposé de deux bras identiques

disposés 
ha
un à 14.6

◦
horizontalement de 
haque 
�té de la ligne de fais
eau. Il inter
epte don
 seule-

ment les paires de parti
ules émises de la 
ible dans 
es dire
tions.
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Figure 5 � S
héma du dispositif expérimental. Les parties marquées M sont des aimants dipolaires,

les A0, A, B, et C sont des 
hambres à �l proportionnelles (8000 �ls en tout), les parties marquées a,

b sont des hodos
opes 8x8, S désigne 3 stations de 
alorimètres au verre au plomb. CB , C0, et Ce sont

des 
ompteurs �erenkov

15.1 Le spe
tromètre

Composé des aimants et des 
hambres à �l, il permet de mesurer la quantité de mouvement

des parti
ules qui traversent le déte
teur. Le sens de la 
ourbure détermine la 
harge. En ef-

fet, la traje
toire est mesurée par les plans de 
hambre à �l notées A0, A, B, et C dans la

�gure 5. Les 11 plans de �ls de 20 µm de diamètre espa
és de 2 
m ainsi que leurs orien-

tations sont s
hématisés dans la �gure 7. Une parti
ule 
hargée ionise le gaz de la 
hambre à

�ls qu'elle traverse. Les �ls sont mis sous haute tension positive et les éle
trons libérés se dé-

pla
ent dans le 
hamp ainsi 
réé vers le �l le plus pro
he (lignes de 
hamp voir �gure 6).

Figure 6 � Champ éle
trique dans une


hambre à �ls

Ils ionisent eux-aussi le gaz, et une avalan
he se forme

qui va donner un signal éle
trique 
olle
té sur les �ls

d'anode. Les ions, eux se dépla
ent - plus lentement vers

les plans de 
athode. La 
harge totale 
olle
tée est pro-

portionnelle à l'énergie déposée par ionisation tant que

le tension reste en-dessous d'un 
ertain seuil. Au-dessus,

de 
e seuil, le passage d'une parti
ule ionisante provoque

des 
laquages (
hambres à étin
elles, 
ompteurs geiger).

Le nombre de plans tou
hés permet d'éliminer le bruit

de fond de 
onversions de photons de basse énergie qui ne

laissent du signal que dans quelques plans. Le rayon de


ourbure de la traje
toire dans le plan perpendi
ulaire au


hamp magnétique des aimants est relié à la quantité de mouvement par p⊥ (GeV/
)=0.3 ·Q(e) ·B(T ) ·
R(m). La mesure de la masse invariante de la paire e+e− né
essite la 
onnaissan
e de la quantité de

mouvement de 
ha
un des éle
trons. La résolution spatiale d'une 
hambre à �l est de l'espa
ement divisé
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par

√
12, i
i ∼6 mm. Pour rappel la varian
e d'une distribution uniforme entre -d/2 et d/2, normalisée

à 1 (f(x)=1/d sur l'intervalle et 0 ailleurs) vaut σ2 =

∫ d/2

−d/2
x2 ·f(x) ·dx−

(

∫ d/2

−d/2
x · f(x) · dx

)2

, don


σ = d/
√
12

15.2 L'hodos
ope

Figure 7 � Orientation relative des �ls des

di�érentes stations de 
hambres à �ls

Un hodos
ope (a,b) sur la �gure 5 est habituellement


omposé de s
intillateurs organiques. Les s
intillateurs,

matériaux qui réagissent au passage d'une parti
ule ion-

isante par l'émission de lumière, sont très utile pour dé-


len
her l'a
quisition de donnée 
ar leur signal lumineux

est émis en ∼0.1 ns, 
e qui permet une prise de dé
ision

rapide, basée sur la 
oïn
iden
e du signal observé et de

l'arrivée d'un paquet de protons sur la 
ible.

15.3 Compteurs �erenkov

Une parti
ule 
hargée émet de la radiation �erenkov,

lorsque 
elle-
i va plus vite que la vitesse de phase de

la lumière dans le milieu qu'elle traverse. L'angle θc d'émission de la radiation par rapport à la

dire
tion de la parti
ule, pour une parti
ule de vitesse βc dans un milieu d'index de réfra
tion n est

cos θc = 1/(nβ). Le seuil d'émission est don
 βseuil = 1/n et γseuil = n/
√
n2 − 1. Comme γ = E

m , les

seuils d'émission sont di�érents pour des parti
ules de masses di�érentes. En parti
ulier, les 
ompteurs

�erenkov peuvent être réglés de façon à ne pas être sensibles aux pions mais bien aux éle
trons.

L'indi
e de réfra
tion de CB est 
hoisi de façon à être sensible aux éle
trons au-dessus de 10 MeV

et insensible aux pions en dessous de 2.7 GeV. Les 
ompteurs sont remplis d'H2 et leurs fenêtres

d'entrée et de sortie sont de 125 et 250 µm. Le nombre de photons produit par intervalle de longueur

et d'énergie E du photon pour une parti
ule de 
harge Qe vaut :

d2N

dxdE
=
αQ2

~c
sin2 θc ≃ 370 sin2 θc(E)eV −1cm−1

.

La lumière produite est ré�é
hie sur un miroir sphérique et renvoyée vers un photo-

multipli
ateur. La tension de 
elui-
i doit être ajustée pour être e�
a
e pour un éle
-

tron, mais pas bruyant, 
ar dans la zone de fais
eau le niveau de radiation est très

élevé et il faut éviter les 
oïn
iden
es fortuites. Les photomultipli
ateurs sont réglés

de telle sorte que le passage d'un éle
tron produise un signal de 8 photoéle
trons.
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Figure 8 � Photo du 
ompteur �erenkov

Ce, ave
 les 
hambres multi-�ls (A,B,C) à

l'arrière et des plans d'hodos
ope (Z). Tout

à l'arrière on devine le 
alorimètre au verre

plombé (U)

15.4 Calorimètres

Pla
és derrière les autres déte
teurs, les 
alorimètres

mesurent l'énergie des parti
ules en les faisant intéragir

dans un matériau dense et si possible s
intillant et

transparent. Le nombre de parti
ules produites lors

de l'intera
tion (éle
tromagnétique pour les e

−
et γ et

hadronique pour les hadrons) est proportionnel à l'énergie

de la parti
ule. Ces parti
ules vont elles-même interagir

dans le milieu. Les parti
ules 
hargées produisent de

la lumière (s
intillation et/ou �erenkov) et 
elle-
i est


olle
tée. Après 
alibration ave
 des fais
eaux d'énergie


onnue, l'intensité lumineuse 
olle
tée permet de mesurer

l'énergie de la parti
ule in
idente. A�n de 
apturer

toute la gerbe de parti
ule il faut prévoir plusieurs (

habituellement entre 5 et 8 ) longueurs d'intera
tions

nu
léaires. La �gure 9 montre pour quels éléments 
ette

longueur est la plus faible et don
 la plus intéressante du

point de vue du 
oût en déte
teur. Les matériaux 
hoisis

i
i sont du plexiglas au plomb et du verre au plomb

(PbO, qui est transparent mais d'un Z plus élevé que le

Si et plus dense que la sili
e). Il y a 10 longueurs d'intera
tion de telle sorte que toute l'énergie des

parti
ules sera 
ontenue. Chaque déte
teur est segmenté en environ 100 
ellules a�n de mesurer la

dire
tion de la traje
toire des éle
trons.

Figure 9 � Longeur d'intera
tion nu
léaire

divisée par la masse volumique (λI/ρ) et de
radiation (éle
tromagnétique) X0/ρ (pour

les éléments au-dessus de Z=20)

Pour 
alibrer la réponse du 
alorimètre aux éle
trons

il faut pouvoir inje
ter un fais
eau d'éle
tron dans la ligne

de fais
eau. La 
alibration est faite au moyen de la dés-

intégration en vol de π0 → γe+e− (τ = 10−19s). Dans
le bras où la polarité des aimants est prévue pour séle
-

tionner les 
harges négatives, le e

+
est dé�é
hi vers l'ex-

térieur. La 
oïn
iden
e entre le �erenkov où il est mesuré

et les hodos
opes et les autres �erenkov permet de s'as-

surer qu'on a un fais
eau pur d'éle
tron pour 
alibrer (au

moyen de la quantité de mouvement re
onstruite grâ
e au

spe
tromètre)

15.5 Blindage

Toutes les se
ondes 10

12
protons arrivent sur une 
ible

dont la longueur est de 10% de la longueur de 
ollision. Il y a don
 autant de parti
ules qui arrivent

dans la zone expérimentale. Pour protégéer les déte
teurs et les physi
iens, ils ont dû ré
upérer plus

de blo
s de bétons que n'étaient disponibles à BNL ! Il leur a fallu 10 000 tonnes de béton, 100 tonnes

de plomb, 5 tonnes d'uranium et 5 tonnes de savon( !) (au-dessus de C0, entre M1 et M2 et autour de

l'entrée de Ce pour stopper les neutrons lents). Même 
omme ça le niveau de radiation dans la zone une

heure après l'arrêt de fais
eau était de 50 mSv/h (2.5 fois la dose annuelle admise pour un travailleur

du nu
léaire en Fran
e !)
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16 Questions

1- Pourquoi 
hoisir des 
ollisions proton-noyau plut�t qu'un fais
eau e+e− ? Quels sont les problèmes

inhérents aux deux options ?

Ave
 une 
ollision proton-noyau, on peut 
ouvrir plusieurs énergie de 
entre de masse des intéra
tions

élémentaires. De plus, les parti
ules re
her
hée sont produites via l'intéra
tion forte, 
'est don
 plus

e�
a
e. Le problème est de tenir le �ux de parti
ules produites lors de 
es 
ollisions.

2- La 
ible 
hoisie pour le fais
eau de proton est du beryllium. Pourquoi 
e 
hoix plut�t que du

plomb ou du tungstène ?

On emploie des 
ibles en beryllium 
ar elles 
hau�ent moins et don
 risquent moins de fondre. Leur

A faible fait qu'il y a moins de nu
leons de basse énergie par intera
tion, sa 
apa
ité 
alori�que entre

20

◦
C et la moitié de la température de fusion est 5 fois plus élevée que 
elle du tungstène par exemple,

et il est fa
ile à refroidir.

3- Pourquoi 
hoisir 14.6

◦

omme angle par rapport à la ligne de fais
eau ? (Quelle est l'énergie


inétique dans le référentiel du 
entre de masse à laquelle le taux de produ
tion du V

0
in
onnu

sera le plus élevé ? Pour un V

0
produit par un fais
eau de protons de 28.3 GeV dans le référentiel

du laboratoire. Ave
 
ette énergie 
inétique dans le 
entre de masse, à quel angle sont émis la

paire d'éle
trons re
her
hée et produite par désintégration ?)

La produ
tion est maximale à la résonnan
e qui 
orrespond à la parti
ule produite au repos dans son

référentiel propre. Si on se limite aux désintégrations e+e− partant à 90

◦
( moins de 
ontamination

due aux restes de la 
ollision plus sur l'avant ), 
es éle
trons émergeront à un angle de 14.6

◦
dans le

laboratoire ( où les protons ont une énergie de 28.3 GeV).

4- Vu sa position, à quoi peut bien servir le 
ompteur CB ?

Le 
ompteur Cerenkov CB sert à déte
ter les éle
trons provenant de la désintégration π0 → γe+e−.
Un éle
tron est déte
té dans CB , l'autre part dans le spe
tromètre ave
 des 
ara
téristiques de 
e fait


onnue. Cela permet d'étalonner le spe
tromètre ave
 des éle
trons 
onnus.

5- Quelles sont les hypothèses faites sur 
e que peut être la résonan
e ?

Les parti
ules 
harmés ou les a ( un tru
 qui a à voir ave
 l'uni�
ation éle
trofaible d'après le papier

référen
é dans l'arti
le ) ou le boson Z0
.
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Arti
le 3 : Dé
ouverte des 
ourants neutres

17 Intera
tions neutrino-quark

1- Les fais
eaux de neutrinos produits en laboratoire sont en général des fais
eaux de neutrinos

muoniques. Expliquer les raisons de 
e 
hoix.

Les parti
ules pouvant être a

élérées sont les parti
ules 
hargées. Un fais
eau de neutrinos est obtenu à

partir d'un fais
eau de parti
ules 
hargées se désintégrant en neutrinos. Pour avoir le temps d'a

élérer

une parti
ule, il faut qu'elle ne se désintègre pas trop rapidement. Parmi les parti
ules 
hargées, seuls

les pions et muons sont utilisables. Pour avoir des fais
eau de neutrinos d'énergie 
onnues, il faut que

la désintégration de la parti
ule 
hargée se fasse en 2 
orps. Il ne reste don
 que le pion qui 
onvient

et qui se désintègre en muon+neutrino.

2- On 
onsidère un �ux de neutrino muonique traversant une 
ible matérielle. L'intera
tion par


ourant 
hargé (CC) du neutrino est gouverné par le diagramme suivant :

�

W−(q)

νµ(k)

d(p)

µ−(k′)

u(p′)

E
rire l'élément de matri
e 
orrespondant.

M = ūµ

(

−i gW
2
√
2
γα(1− γ5)

)

uνµ
−i(gαβ−qαqβ/m

2
W c2)

q2−m2
W

c2
ūu

(

−i gW
2
√
2
γβ(1− γ5)

)

udVud où Vud est une 
om-

posante de la matri
e CKM.

3- Donner le diagramme de Feynmann pour l'intera
tion CC entre antineutrino muonique et quark.

�

W−(q)

ν̄µ(k)

u(p)

µ+(k′)

d(p′)

4- En supposant que q2 << m2
W c

2
, en négligeant les masses et en ne tenant pas 
ompte de la
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matri
e CKM, le 
arré de l'élement de matri
e sommé sur les spins pour l'intera
tion νµd s'é
rit :

|Mνd|2 = 64G2
F (k.p)(k

′.p′) où GF est la 
onstante de Fermi. En déduire le même 
arré pour

l'intera
tion ν̄µu.

Le diagramme est identique mais la ligne muonique est orientée en sens inverse. Du 
oup, dans l'élément

de matri
e, la position du neutrino est interverti ave
 
elle du muon. Ave
 les notations des diagrammes


i-dessus, 
elà revient à é
hanger k et k′. Et don
 |Mν̄u|2 = 64G2
F (k

′.p)(k.p′)

5- La se
tion e�
a
e di�érentielle de la réa
tion s'é
rit :

dσ
dΩ = 1

64π2s
|M|2 où s est le 
arré de l'énergie

de la 
ollision dans le 
entre de masse de la 
ollision. Cal
uler

dσ
dΩ (νµd) et

dσ
dΩ(ν̄µu). On notera θ

l'angle fait, dans le référentiel du 
entre de masse, entre la dire
tion du neutrino in
ident et la

dire
tion du quark sortant. On négligera les masses.

s = (k + p)2 = 2k.p = (k′ + p′)2 = 2k′.p′ don
 dσ
dΩ (νµd) =

G2
F s

4π2 . On a aussi k + p = k′ + p′,
don
 k − p′ = k′ − p et don
 k.p′ = k′.p (on néglige les masses). Dans le 
entre de masse k.p′ =

Eν̄Ed − Eν̄Ed cos(θ) =
√
s
2

√
s
2 (1− cos(θ)) = s

4(1− cos(θ)). Don
 dσ
dΩ(ν̄µu) =

G2
F s

16π2 (1− cos(θ))2

6- En déduire le rapport

σ(νd)
σ(ν̄u) .

On intègre sur l'angle solide et don
 σ(νd) =
G2

F s
π et σ(ν̄u) =

G2
F s
8π

∫ π
0 (1− cos(θ))2 sin(θ)dθ et par


hangement de variable u = cos(θ), l'intégrale se réé
rit :
∫ 1
−1 (1− u)2 du =

∫ 1
−1(1+u

2)du = 2+ 2
3 = 8

3

d'où σ(ν̄u) =
G2

F s
3π et

σ(νd)
σ(ν̄u) = 3

7- Que faudrait-il prendre en 
ompte pour passer de

σ(νd)
σ(ν̄u) à

σ(νN)
σ(ν̄N) où N est un nu
léon ?

Les distributions de partons u(x, y), d(x, y), ....

8- Si l'on refait le même exer
i
e ave
 les 
ourants neutres, quel paramètre physique supplémentaire

va intervenir ?

L'angle de Weinberg θW par le fait que le 
ouplage Zqq fait intervenit sin2 θW et queMW =MZ cos θW

L'image 10 montre les rapports de se
tion e�
a
e neutrino-matière

σNC

σCC
mesurées pour les neutrinos

et les antineutrinos. Ces rapports sont prédits par la théorie éle
trofaible. Ils dépendent de l'angle de

Weinberg. Au milieu des années 70, 
es rapports avait été mesurés ave
 Gargamelle au CERN et HPWF

au FNAL. Le résultat de FNAL était in
ompatible ave
 la théorie éle
trofaible. Celui du CERN l'était

mais la valeur de l'angle Weinberg (sin2 θW = 0.23) n'était pas la bonne.
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Figure 10 � Valeurs des rapports NC/CC mesurés par les expérien
es Gargamelle et HPWF 
omparées

aux prédi
tions du Modèle Standard.
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18 QED et la réalité du nombre quantique de 
ouleur

L'intérêt de la produ
tion en mode e+e− est parti
ulier dans le sens où la mesure du rapport

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(voir �gure 12) permet tester l'hypothèse de la 
ouleur, dans un pro
essus

de QED ordinaire.

�

γ

e−

e+

f̄

f

Figure 11 � Produ
tion d'une

paire fermion anti-fermion (seul

graphe sauf pour f=e)

L'amplitude du graphe de la �gure 11 fait intervenir des termes en

M ∝ [v̄e(ieγ
µ)ue]

−igµν
q2

[ūf (iqfeγ
ν)vf ], de telle sorte que la se
tion

e�
a
e pour 
haque paire de fermion-antifermion est σff̄ ∝ |M|2,
de telle sorte que, si on néglige les e�ets d'espa
e de phase, le rap-

port :

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
≃
∑

f

q2f .

En-dessous du seuil de produ
tion du 
harme, on s'attend à R =
2 ·
(−1

3

)2
+
(

2
3

)2
= 2

3 si le seul nombre quantique di�érent au

numérateur et au dénominateur est la saveur des quarks. Si il y

a en plus le degré de liberté de 
ouleur, on s'attend à 
e que

R = 2. Au-dessus du seuil du 
 et avant 
elui du b on s'attend

à R = 2
[

·
(−1

3

)2
+
(

2
3

)2
]

= 10
9 sans 
ouleur ou

10
3 = 3.33 ave
 la


ouleur. C'est bien 
e qu'on observe sur la �gure 12, à peu de 
hoses près... (Quelles approximations

a-t-on faites ?)

Les masses des quarks sont di�érentes, mais surtout les quarks ne sont pas des fermions libres qui obéis-

sent à l'équation de Dira
. Ce sont des parti
ules virtuelles qui vont interagir à nouveau : hadronisation,

formation d'un état lié.

1- Nous allons maintenant 
al
uler la se
tion e�
a
e du pro
essus dé
rit par la �gure 11. Donner

l'amplitude M de 
e diagramme en supposant que les fermions en sortie ne sont pas des éle
trons.

(2π)8
∫

[v̄e(ieγ
µ)ue]

−igµν
q2

[ūf (iqfeγ
ν)vf ] δ

4(pf + pf̄ − q)δ4(q − pe− − pe+)
d4q

(2π)4

= i(2π)4 [v̄e(eγ
µ)ue] [ūf (qfeγ

ν)vf ]
gµν

(pe− + pe+)2
δ4(pf + pf̄ − pe− − pe+)

⇒ M = − [v̄e(eγ
µ)ue] [ūf (qfeγ

ν)vf ]
gµν

(pe− + pe+)
2

2- En utilisant les formules de Casimir, montrer que :
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Figure 12 �

〈

|M|2
〉

=
8q2fe

4

(pe− + pe+)
4

(

(pe− · pf )(pe+ · pf̄ ) + (pe− · pf̄ )(pe+ · pf ) +m2
e(pf · pf̄ ) +m2

f (pe− · pe+) + 2m2
em

2
f

)

On rappelle que

Tr[γµ 6p1γν 6p2] = 4[pµ1p
ν
2 + pν1p

µ
2 − (p1 · p2)gµν ]
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〈

|M|2
〉

=
1

4

∑

s
e+

,s
e−

,sf ,sf̄

|M|2

=
1

4

q2fe
4

(pe− + pe+)
4

∑

se+ ,se− ,sf ,sf̄

[v̄e+γ
µue− ]

[

ūfγµvf̄
]

[v̄e+γ
νue− ]

∗ [ūfγνvf̄
]∗

=
1

4

q2fe
4

(pe− + pe+)4
Tr (γµ(6pe− +me)γ

ν(6pe+ −me)) Tr
(

γµ(6pf̄ −mf )γν(6pf +mf )
)

et

Tr (γµ(6pe− +me)γ
ν(6pe+ −me)) = Tr (γµ 6pe−γν 6pe+)−m2

eTr (γ
µγν)

= 4
[

pµ
e−
pνe+ + pνe−p

µ
e+

− (pe− · pe+)gµν
]

− 4m2
eg

µν

Et don
 :

〈

|M|2
〉

=
4q2fe

4

(pe− + pe+)
4

[

pµ
e−
pνe+ + pνe−p

µ
e+

− (pe− · pe+ +m2
e)g

µν
] [

pf,µpf̄ ,ν + pf,νpf̄ ,µ − (pf · pf̄ +m2
f )gµν

]

=
4q2fe

4

(pe− + pe+)
4

(

2(pe− · pf )(pe+ · pf̄ ) + 2(pe− · pf̄ )(pe+ · pf )− 2(pf · pf̄ )
(

(pe− · pe+) +m2
e

)

− 2(pe− · pe+)
(

(pf · pf̄ ) +m2
f

)

+ 4(pf · pf̄ )(pe− · pe+) + 4m2
e(pf · pf̄ ) + 4m2

f (pe− · pe+) + 4m2
em

2
f

)

=
8q2fe

4

(pe− + pe+)
4

(

(pe− · pf )(pe+ · pf̄ ) + (pe− · pf̄ )(pe+ · pf ) +m2
e(pf · pf̄ ) +m2

f (pe− · pe+) + 2m2
em

2
f

)

3- Donner les quadri-ve
teurs énergie-impulsion de 
ha
une des parti
ules d'entrée et de sortie dans

le référentiel du 
entre de masse de la 
ollision. On notera E l'énergie de l'éle
tron in
ident, Ef

l'énergie du fermion sortant et θ l'angle entre la dire
tion du fermion sortant et la dire
tion de

l'éle
tron in
ident.

pe− = (E, pe, 0, 0)

pe+ = (E,−pe, 0, 0)
pf = (Ef , pf cos θ, pf sin θ, 0)

pf̄ = (Ef ,−pf cos θ,−pf sin θ, 0)

4- exprimer

〈

|M|2
〉

en fon
tion des énergies et impulsions dans le 
entre de masse.
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〈

|M|2
〉

=
8q2fe

4

16E4
A =

q2fe
4

2E4
A

ave


A = (EEf − pepf cos θ)
2 + (EEf + pepf cos θ)

2 +m2
e(E

2
f + p2f ) +m2

f (E
2 + p2e) + 2m2

em
2
f

= 2E2E2
f + 2p2ep

2
f cos

2 θ +m2
e(2E

2
f −m2

f ) +m2
f (2E

2
e −m2

e) + 2m2
em

2
f

= 2E2E2
f + 2p2ep

2
f cos

2 θ + 2m2
eE

2
f + 2m2

fE
2
e

soit :

〈

|M|2
〉

=
q2fe

4

E4

(

E2E2
f + p2ep

2
f cos

2 θ +m2
eE

2
f +m2

fE
2
e

)

On peut réé
rire 
ette expression sous la forme :

〈

|M|2
〉

= q2fe
4
E2

f

E2

(

1 + β2β2f cos
2 θ +

m2
e

E2
+
m2

f

E2
f

)

= q2fe
4
E2

f

E2

(

1 + β2β2f cos
2 θ +

1

γ2
+

1

γ2f

)

= q2fe
4
E2

f

E2

(

1 + β2β2f cos
2 θ + (1− β2) + (1− β2f )

)

= q2fe
4
E2

f

E2

(

3 + β2β2f cos
2 θ − β2 − β2f

)

(A)

ave
 β et βf les rapports

v
c pour l'éle
tron in
ident et le fermion sortant.

5- La se
tion e�
a
e du pro
essus s'é
rit :

dσ =

〈

|M|2
〉

4
√

(pe− · pe+)2 −m4
e

d6Φ2

où d6Φ2 est l'espa
e de phase à 2 parti
ules :

d6Φ2(q = pe− + pe+; pf , pf̄ ) = (2π)4 δ4
(

pe− + pe+ − pf − pf̄
) d3~pf

(2π)3 2Ef

d3~pf̄

(2π)3 2Ef̄

Cal
uler σ(e+e− → f f̄)

ENS - Lyon 55 M1 - Symétries et Parti
ules



(pe− · pe+)2 −m4
e =

(

E2 + p2e
)2 −m4

e =
(

2E2 −m2
e

)2 −m4
e = 4E4 − 4E2m2

e = 4E2p2e

d'où :

dσ =

〈

|M|2
〉

8Epe
d6Φ2

=

〈

|M|2
〉

32 (2π)2EE2
fpe

δ4
(

pe− + pe+ − pf − pf̄
)

d3~pfd
3~pf̄

=

〈

|M|2
〉

128π2EE2
fpe

δ
(

Ee− + Ee+ − Ef − Ef̄

)

p2fdpfdΩ

=

〈

|M|2
〉

128π2EE2
fpe

δ (2E − 2Ef ) p
2
fdpfdΩ

=

〈

|M|2
〉

256π2EE2
fpe

δ (E − Ef ) p
2
fdpfdΩ

On a Ef =
√

p2f +m2
f don
 E2

f = p2f +m2
f et EfdEf = pfdpf , d'où :

dσ =

〈

|M|2
〉

256π2EE2
fpe

δ (E − Ef ) pfEfdEfdΩ

=

〈

|M|2
〉

256π2E2pe
pfdΩ

=

〈

|M|2
〉

256π2E2
√

E2 −m2
e

√

E2 −m2
fdΩ

=
q2fe

4

256π2E6

√

E2 −m2
f

E2 −m2
e

(

E4 + p2ep
2
f cos

2 θ +m2
eE

2 +m2
fE

2
)

dΩ

On a

∫

dΩ = 4π et

∫

cos2 θdΩ = 2π
∫

π
2
−π
2

cos2 θd(cos θ) = 2π
∫ 1
−1 u

2du = 4π
3 et don
 :

σ =
q2fe

4

256π2E6

√

E2 −m2
f

E2 −m2
e

4π

(

E4 +
p2ep

2
f

3
+m2

eE
2
f +m2

fE
2
e

)

=
q2fe

4

64πE6

√

E2 −m2
f

E2 −m2
e

1

3

(

3E4 + (E2 −m2
e)(E

2 −m2
f ) + 3m2

eE
2 + 3m2

fE
2
)

=
q2fe

4

192πE6

√

E2 −m2
f

E2 −m2
e

(

3E4 +E4 − E2m2
e − E2m2

f +m2
em

2
f + 3m2

eE
2 + 3m2

fE
2
)

=
q2fe

4

192πE6

√

E2 −m2
f

E2 −m2
e

(

4E4 + 2m2
eE

2 + 2m2
fE

2 +m2
em

2
f

)
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L'équation (A) donne

dσ

dΩ
=

q2fe
4

256π2E2

pf
pe

(

3 + β2β2f cos
2 θ − β2 − β2f

)

=
q2fα

2

4s

pf
pe

(

3 + β2β2f cos
2 θ − β2 − β2f

)

(B)

aves

√
s = 2E et α = e2

4π . Cette équation peut aussi s'é
rire sous une forme isolant les termes qui

disparaissent quand les masses sont négligées :

dσ

dΩ
=
q2fα

2

4s

pf
pe

(

1 + cos2 θ + (1− β2) sin2 θ + (1− β2f ) sin
2 θ + (1− β2)(1− β2f ) cos

2 θ
)

(C)

L'équation (B) donne

σ =
q2fπα

2

3s

pf
pe

(

9 + β2β2f − 3β2 − 3β2f
)

(D)

6- En déduire Rq =
σ(e+e− → qq̄)

σ(e+e− → µµ̄)

Rq = q2f

√

E2 −m2
q

E2 −m2
µ

4E4 + 2E2(m2
e +m2

q) +m2
em

2
q

4E4 + 2E2(m2
e +m2

µ) +m2
em

2
µ

7- Montrer que si on néglige la masse de l'éle
tron, Rq = q2f
pq
pµ

2E2 +m2
q

2E2 +m2
µ

où pq (resp. pµ) est

l'impulsion du quark (resp. du muon) d'énergie E.

Rq = q2f

√

E2 −m2
q

E2 −m2
µ

4E4 + 2E2m2
q

4E4 + 2E2m2
µ

= q2f
pq
pµ

2E2 +m2
q

2E2 +m2
µ

8- Que vaut Rq si on néglige toutes les masses ?

Rq = q2f
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9- Montrer que si on néglige la masse de l'éle
tron, la se
tion e�
a
e di�érentielle

dσ(e+e− → f f̄)

dΩ
et la se
tion e�
a
e σ(e+e− → f f̄) sont égales à

dσ(e+e− → f f̄)

dΩ
=
q2fα

2

4s
βf
(

2− β2f sin
2 θ
)

σ =
q2f2πα

2

3s
βf
(

3− β2f
)

où βf est le rapport

v
c pour le fermion sortant, α = e2

4π et s est le 
arré de l'énergie dans le 
entre
de masse.

Négliger la masse de l'éle
tron revient à faire β = 1 dans les équations (B) et (D). D'après l'équation

(B) :

dσ(e+e− → f f̄)

dΩ
=
q2fα

2

4s

pf
pe

(

3 + β2f cos
2 θ − 1− β2f

)

=
q2fα

2

4s

pf
E

(

2 + β2f (cos
2 θ − 1)

)

=
q2fα

2

4s
βf
(

2− β2f sin
2 θ
)

(E)

D'après l'équation (C), on a aussi l'expression :

dσ(e+e− → f f̄)

dΩ
=
q2fα

2

4s
βf
(

1 + cos2 θ + (1− β2f ) sin
2 θ
)

En�n, l'équation (D) donne :

σ =
q2fπα

2

3s

pf
pe

(

9 + β2f − 3− 3β2f
)

=
q2fπα

2

3s

pf
E

(

6− 2β2f
)

=
q2f2πα

2

3s
βf
(

3− β2f
)

(F)

10- Donner l'expression de 
es se
tions e�
a
es si on néglige aussi la masse du fermion f .

En négligeant toutes les masses, βf ∼ 1 et d'après les équations (E) et (F),

dσ(e+e− → f f̄)

dΩ
=
q2fα

2

4s

(

2− sin2 θ
)

=
q2fα

2

4s

(

1 + cos2 θ
)

σ =
q2f2πα

2

3s
(3− 1)

=
q2f4πα

2

3s
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19 Di�usion ave
 éle
trons, positons et photons

1- Donnez les diagrammes de Feynman et M pour

� la di�usion éle
tron-éle
tron

� la di�usion éle
tron-positon

� la di�usion 
ompton.

Di�usion éle
tron-éle
tron :

�

γ (q)

e− (p1)

e− (p2)

e− (p3)

e− (p4)

�

γ (q)

e− (p1)

e− (p2)

e− (p3)

e− (p4)

On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de gau
he :

(2π)4
∫

[

ū(s3)(p3)igγ
µu(s1)(p1)

] −igµν
q2

[

ū(s4)(p4)igγ
νu(s2)(p2)

]

× δ4(p1 − p3 − q)δ4(p2 − p4 + q)d4q

On intègre, multiplie par i, enlève un δ de 
onservation de l'impulsion-énergie totale et on obtient M.

⇒ Mgauche = − g2

(p1 − p3)2

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s4)(p4)γµu
(s2)(p2)

]

Le graphe de droite est le même ave
 les éle
trons sortants inter
hangés, il va s'ajouter ave
 un 
hange-

ment de signe à 
elui de gau
he.

⇒ Mgauche +Mdroite = − g2

(p1 − p3)2

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s4)(p4)γµu
(s2)(p2)

]

+
g2

(p1 − p4)2

[

ū(s4)(p4)γ
µu(s1)(p1)

] [

ū(s3)(p3)γµu
(s2)(p2)

]
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Di�usion éle
tron-positon :

�

γ (q)

e− (p1)

e+ (p2)

e− (p3)

e+ (p4)

�

γ (q)

e− (p1)

e+ (p2)

e− (p3)

e+ (p4)

On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de gau
he :

(2π)4
∫

[

ū(s3)(p3)igγ
µu(s1)(p1)

] −igµν
q2

[

v̄(s2)(p2)igγ
νv(s4)(p4)

]

× δ4(p1 − p3 − q)δ4(p2 − p4 + q)d4q

On intègre, multiplie par i et on obtient Mgauche.

⇒ Mgauche = − g2

(p1 − p3)2

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

v̄(s2)(p2)γµv
(s4)(p4)

]

On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de droite (annihilation

éle
tron-positon suivie de la produ
tion d'une paire) :

(2π)4
∫

[

ū(s3)(p3)igγ
µv(s4)(p4)

] −igµν
q2

[

v̄(s2)(p2)igγ
νu(s1)(p1)

]

× δ4(p1 + p2 − q)δ4(q − p3 − p4)d
4q

On intègre, multiplie par i et on obtient Mdroite.

⇒ Mdroite = − g2

(p1 + p2)2

[

ū(s3)(p3)γ
µv(s4)(p4)

] [

v̄(s2)(p2)γµu
(s1)(p1)

]

Le graphe de droite est le même que le graphe de gau
he ave
 l'éle
tron sortant é
hangé ave
 le positon

entrant. Il va s'ajouter ave
 un 
hangement de signe à 
elui de gau
he.

⇒ Mgauche +Mdroite = − g2

(p1 − p3)2

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

v̄(s2)(p2)γµv
(s4)(p4)

]

+
g2

(p1 + p2)2

[

ū(s3)(p3)γ
µv(s4)(p4)

] [

v̄(s2)(p2)γµu
(s1)(p1)

]
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Di�usion Compton :

�

e− (q)

e− (p1)

γ (p2)

γ (p3)

e− (p4)

�

e− (q)

e− (p1)

γ (p2)

γ (p3)

e− (p4)

On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de gau
he :

(2π)4
∫

ǫ(s2)µ

[

ū(s4)(p4)igγ
µ i(6q +mc)

(q2 −m2c2)
igγνu(s1)(p1)

]

ǫ∗(s3)ν × δ4(p1 − p3 − q)δ4(p2 − p4 + q)d4q

On intègre, multiplie par i et on obtient Mgauche.

⇒ Mgauche =
g2

(p1 − p3)2 −m2c2

[

ū(s4)(p4) 6ǫ(s2)(6p1− 6p3 +mc) 6ǫ∗(s3)u(s1)(p1)
]

On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de droite :

⇒ Mdroite =
g2

(p1 + p2)2 −m2c2

[

ū(s4)(p4) 6ǫ(s2)(6p1+ 6p2 +mc) 6ǫ∗(s3)u(s1)(p1)
]

Le graphe de droite n'est pas le même que le graphe de gau
he à un é
hange près. Il va s'ajouter à


elui de gau
he.M = Mgauche +Mdroite

2- On 
onsidère la di�usion éle
tron-éle
tron, 
al
uler l'amplitude au 
arré de 
ha
un des 2 graphes.

Le terme de gau
he 
ontribue au 
arré 
omme :

|Mgauche|2 =
g4

(p1 − p3)4
1

4

∑

s1

∑

s2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s3)(p3)γ
νu(s1)(p1)

]∗

[

ū(s4)(p4)γµu
(s2)(p2)

] [

ū(s4)(p4)γνu
(s2)(p2)

]∗

En utilisant les formules de Casimir :

⇒ |Mgauche|2 =
g4

4(p1 − p3)4
Tr (γµ 6p1γν 6p3) Tr (γµ 6p2γν 6p4)

⇒ |Mgauche|2 =
4g4

(p1 − p3)4
[pµ1p

ν
3 − gµν(p1 · p3) + pµ3p

ν
1 ] [p2µp4ν − gµν(p2 · p4) + p4µp2ν ]

⇒ |Mgauche|2 =
8g4

(p1 − p3)4
[(p1 · p2)(p3 · p4) + (p1 · p4)(p3 · p2)]

⇒ |Mgauche|2 =
2g4

(p1 · p3)2
[(p1 · p2)(p3 · p4) + (p1 · p4)(p3 · p2)] où on a utilisé le fait que (p1 − p3)

2 =

p21 + p23 − 2p1 · p3 = −2p1 · p3 en négligeant les masses.

Le terme de droite s'obtient en é
hangeant p3 et p4.

|Mdroite|2 =
2g4

(p1 · p4)2
[(p1 · p2)(p3 · p4) + (p1 · p3)(p4 · p2)]

3- Dans les formules de Casimir, intervient Γ = γ0Γ†γ0, montrer que :

� [ūaΓub] =
[

ūbΓua
]∗

� Γ = Γ
� γµγτγν = γνγτγµ
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� [ūaΓub] = [ūaΓub]
†∗ =

[

u†aγ
0Γub

]†∗
=
[

u†bΓ
†γ0ua

]∗
=
[

u†bγ
0γ0Γ†γ0ua

]∗
=
[

ūbΓua
]∗

� Γ = γ0Γ
†
γ0 = γ0

(

γ0Γ†γ0
)†
γ0 = γ0γ0†Γγ0†γ0 = Γ

γµγτγν = γ0 (γµγτγν)† γ0 = γ0γν†γτ†γµ†γ0

= γ0γν†γ0γ0γτ†γ0γ0γµ†γ0

= γνγτγµ

4- Cal
uler le terme d'interféren
e entre les 2 graphes.

MgaucheM∗
droite =

−g4
4(p1 − p3)2(p1 − p4)2

∑

s1

∑

s2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s4)(p4)γµu
(s2)(p2)

]

[

ū(s4)(p4)γ
νu(s1)(p1)

]∗ [
ū(s3)(p3)γνu

(s2)(p2)
]∗

MgaucheM∗
droite =

−g4
4(p1 − p3)2(p1 − p4)2

∑

s1

∑

s2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s4)(p4)γµu
(s2)(p2)

]

[

ū(s1)(p1)γ
νu(s4)(p4)

] [

ū(s2)(p2)γνu
(s3)(p3)

]

⇒ MgaucheM∗
droite =

−g4
4(p1 − p3)2(p1 − p4)2

∑

s3

∑

s4

ū(s3)(p3)γ
µ

(

∑

s1

u(s1)(p1)ū
(s1)(p1)

)

γνu(s4)(p4)

ū(s4)(p4)γµ

(

∑

s2

u(s2)(p2)ū
(s2)(p2)

)

γνu
(s3)(p3)

⇒ MgaucheM∗
droite =

−g4
4(p1 − p3)2(p1 − p4)2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µ 6p1γνu(s4)(p4)

] [

ū(s4)(p4)γµ 6p2γνu(s3)(p3)
]

⇒ MgaucheM∗
droite =

−g4
4(p1 − p3)2(p1 − p4)2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µ 6p1γνu(s4)(p4)

] [

ū(s3)(p3)γµ 6p2γνu(s4)(p4)
]∗

En utilisant les formules de Casimir :

⇒ MgaucheM∗
droite =

−g4
4(p1 − p3)2(p1 − p4)2

Tr (γµ 6p1γν 6p4γµ 6p2γν 6p3)

On utilise les propriétés suivantes des matri
es γ : γµγνγλγσγµ = −2γσγλγν et γµγνγλγµ = 4gνλ,
pour 
al
uler :

γµ 6p1γν 6p4γµ 6p2γν 6p3 = p1σp4λp2αp3βγ
µγσγνγλγµγ

αγνγ
β

= −2p1σp4λp2αp3βγ
λγνγσγαγνγ

β

= −8p1σp4λp2αp3βγ
λgσαγβ

⇒ MgaucheM∗
droite =

2g4

(p1 − p3)2(p1 − p4)2
(p1 · p2)Tr ( 6p4 6p3)

⇒ MgaucheM∗
droite =

8g4

(p1 − p3)2(p1 − p4)2
(p1 · p2)(p3 · p4) =

2g4

(p1 · p3)(p1 · p4)
(p1 · p2)(p3 · p4)

Pour des parti
ules de masse nulle p1+p2 = p3+p4 implique p1 ·p2 = p3 ·p4,p1 ·p3 = p2 ·p4,p1 ·p4 = p2 ·p3
⇒ MgaucheM∗

droite =
2g4

(p1 · p3)(p1 · p4)
(p1 · p2)2
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5- Montrez que pour la di�usion éle
tron-éle
tron à haute énergie (me négligeable), on a

|M2| = 2g4
(p1 · p2)4 + (p1 · p4)4 + (p1 · p3)4

(p1 · p3)2(p1 · p4)2

⇒ |M2| = |Mgauche|2 + |Mdroite|2 + 2MgaucheM∗
droite

⇒ |M2| = 2g4
[

(p1 · p2)2 + (p1 · p4)2
(p1 · p3)2

+
(p1 · p2)2 + (p1 · p3)2

(p1 · p4)2
+

2(p1 · p2)2
(p1 · p3)(p1 · p4)

]

⇒ |M2| = 2g4
(p1 · p2)2 [(p1 · p4) + (p1 · p3)]2 + (p1 · p4)4 + (p1 · p3)4

(p1 · p3)2(p1 · p4)2
Or (p1 · p4) + (p1 · p3) = p1 · (p4 + p3) = p1 · (p1 + p2) = p21 + p1 · p2 = p1 · p2
⇒ |M2| = 2g4

(p1 · p2)4 + (p1 · p4)4 + (p1 · p3)4
(p1 · p3)2(p1 · p4)2
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