M1 - ENS Lyon
Symeétries et Particules
Année 2013 - 2014- Semestre 2b
TD 1 : Ordres de grandeurs et symétries

1 Ordres de grandeur

1- — Quelle distance parcourt une particule ultrarelativiste en 1 ns?

1=3.108%10"2 = 0.3m

— Quelle durée met une particule de masse nulle pour traverser un proton ?

taille d’un proton d = 1fm = 10~%m donc t = 1301_0185 =3.10"%s

2- Le muon a un temps de vie de 2,2 - 10~%s. De nombreux muons sont produits lors d’interaction
dans la haute atmosphére de particules cosmiques énergétiques. Pourquoi peut-on les détecter au
sol 7 Peut-on envisager de fabriquer un collisionneur & muons, et quels en seraient les avantages
et les inconvénients ?

Energie typique des muons cosmiques 1 & 10 GeV = v = E/m = 10 GeV/100 MeV = 100 = 8 =
V1 —1/92=0.9999 On peut considérer que les particules se déplacent a la vitesse de la lumiére. Leur
trajet 1=Fyer = 100 x 3 - 108 x 2.2- 1079 = 66km bien plus grand que 'épaisseur de I’atmosphére
(méme avec Tkm pour 1 GeV, une grande partie arrive jusqu’a nous). Un collisionneur & muons est donc
possible, mais il faut produire, focaliser le faisceau et ’accélérer sans trop perdre par désintégration
mais cela permettrait de dépasser la limite en énergie due & la radiation synchrotron des collisionneurs
ete™ car cette perte est proportionnelle & m?, tout en gardant une particule non composite comme
projectile.

3- Comparer les temps de vie des divers mésons suivants, déduire la nature des forces a 'oeuvre, et
proposer un shéma de désintegration :
— " ( contenu en quarks ud ) M = 140MeV, ¢ = 7,8m

ENS - Lyon 1 M1 - Symétries et Particules



Le temps de vie du 71 est 2,6 1078s. 1l s’agit d'un temps relativement long. La désintégration se fait
par interaction faible : d Y

W+

u +

1
Notez que le 7 est trop lourd (1.7 GeV/c?) et que le spin du pion valant 0, et le neutrino de spin 1/2 et

de masse nulle dans le modeéle standard est donc d’hélicité gauche. Il faut donc un anti-lepton gauche.
Or les interactions faibles violant la parité, une particule de spin 1/2 est gauche, une anti-particule
de spin 1/2 est droite. Les leptons chargés sont massifs donc peuvent avoir une composante de l'autre
hélicité et d’autant plus que le masse est grande .

— 9 (quarks (u@i —dd)/v/2 ) M = 135MeV, 7 = 8,4 x 10~ '7s

Désintégration rapide : électromagnétique.

Notons que la désintégration en ete™ est supprimée. A haute énergie, I’intéractiog électromagnétiqge
conserve I’hélicité qui tend & se confondre avec la chiralité. Les couplages photon-lepton-lepton possibles
sont avec 2 leptons identiques de méme hélicité (chiralité) ou avec 2 antileptons de méme hélicité ou
avec un lepton et un antilepton d’hélicité différente (voir Quarks et Lepton d’Halzen et Martin section
6.6). Cette conservation de I'hélicité n’est vérifiee qu’a des termes d’ordre myepion /energie pres.

Le 70 a JP¢ = 0=, son moment cinétique total est J = 0 = L + S, en tant que combinaison de 2
quarks de spin %, il ne peut y avoir que S =0 ou 1 et donc S=L =0ou S =L =1 par combinaison
des moments cinétiques. La parité du systéme ete™ est —1 et doit correspondre a (—1)5+1, ce qui
ne permet que la combinaison L = S = 0. Dés lors, la désintégration du 7° en eTe™ n’est possible
qu’en se désintégrant en 2 fermions de méme hélicité. Or ce couplage est supprimé par un facteur

2
en’;zie = m’Z72 = % =7x 1073 et donc au carré : (m”:‘h) =6 x 107° et le taux de branchement du

70 en ete™ est de 6.46 x 1078.

— ¢ (état lié ss ) M =1,02GeV, ' = 4,4MeV. On signale que M+ = 494MeV .
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7 = h/T = 6.5810722 /4.4 = 1.5107?%s. Tl s’agit donc d’une désintégration forte. ¢ — K+ + K~. (La
désintégration en 3 pions semble plus favorable cinématiquement mais nécessite des gluons suffisam-
ment durs pour créer des paires ¢¢. De tels gluons ne couplent que trés faiblement. Typiquement un
graphe de Feynman que I’on peut couper en ne coupant que les lignes de gluons est supprimé pour
cette raison (régle de OZI du noms des 3 physiciens qui 'ont remarqué ))

¢ — K"+ K~ ¢ — 0t
S S S U
d
B d
i d
d
S S S u

La désintégration du ¢ en 2 pions est supprimée car elle viole la G-parité et ne peut donc pas se faire
par interaction forte.

— J/Y (état lie c¢ ) M = 3,1GeV, T' = 90keV. On signale que Mpo = 1,9GeV.

Le temps de vie est long on a une désintégration faible. En effet : J/1 — Dt + D~ impossible & cause
de la masse des D, la désintégration en 3 Kaons est supprimée par OZI. Il reste donc la désintégration
faible en 2 leptons ou deux quarks.
h  6.58107%2
=——— =7.310"8s

NB:7===
r 90106
[’étude des taux de désintégration du J/1) montre que pour 'essentiel, la désintégration de celui-ci est

gouvernée par 'interaction forte supprimée par OZI et I'interaction faible.

4- Ecrire le carré de la charge de ’electron en unité sans dimension.

a = €2 /dreghc = 1/137

2 Groupes SU(2) et SU(3)

1-  On considére la matrice U(0, @) = e~ 2a"a%/2 o3y o; sont les matrices de Pauli et @, un vecteur
0

unitaire. Montrer que U(6, @) = cos g iU - &' sin 3
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[0a7 Ub] =2 Zc €abcOc = 0q0p — Op0gq
{O-aa Jb} = 2001 = 040 + 00,

1 .
= 040y = 5 ([Uaa Ub] + {Uaa Ub}) = Z 1€qhcOc + 5abI

#(65)(55’)): (Zaim) ij()’j :ZZaibjaiaj
7 J 7 J
= ((_i 0_")(5 5) = Zzaibj [Z ieijkak + (SZ]I b b
i

= (@-D) +i(@xDb) &
k

= (@ -6’ =al=a

= (i-8)?=1

02 _ i (=i -5/2)" _ i (—ibi-5/2)™" i (—ifii- 5/2)"""!

n=0 n! o (2n)! — (2n + 1)!
e = (CD" (027 SN (=) 0/
= ¢ /2_§WI—ZTLZ:: o) &

o i0UG/2 _ cos(0/2) — iii - 5 sin(0/2)

2- Montrer que dans SU(2),2®2®2 = 4@ 2@ 2, et exprimer les états de la somme directe des
représentations irréductibles en fonction des états du produit tensoriel. On précisera la symétrie
des états correspondants aux représentations irréductibles.

On combine deux représentations irréductibles de SU(2), dont le module de représentation est donné
par les vecteurs propres des opérateurs JZ? et J,, dans chacune des deux représentations notés |jimq)
et |jama) avec j;(j; + 1) et m; les valeurs propres correspondantes pour J? et J,,. Le produit direct de
deux représentations irréductibles de SU(2) admet un module de représentation donné par les vecteurs
propres des opérateurs J2 et J, dont les j(j + 1) valeurs propres possibles correspondent aux valeurs
de j allant de |j; — jo| & j1 + j2. Pour chaque valeur de j, il y a 25 4 1 vecteurs propres de valeur propre
m de J, allant de —j & 4.

Dans le cas de deux représentations de dimension 2, que l'on peut associer & la combinaison de deux
spins %, on obtient les valeurs de j’=1,0 avec m’ = —1,0,1 pour 5/ = 1 (un triplet) et m’ = 0 pour
j’=0 (un état singlet). On a donc 2® 2 = 3@ 1. On y combine un 3¢ spin % En le combinant avec

4/ =1, on obtient j = 2, 1 avec respectivement 4 vecteurs propres de J, pour j = %, de valeurs propres

272
m = —%, —%, %, %, et 2 vecteurs propres de J, pour j = %, de valeurs propres m = —%, %
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En combinant le 3¢ spin % avec 7/ = 0, on obtient un deuxiéme doublet de vecteurs propres avec

les valeurs propres j = % et m = ;, 5. On retrouve bien une somme directe d’une représentation de

dimension 4 et de 2 représentations de dimension 2.

On consulte les tables de coefficients de Clebsch-Gordan pour exprimer les fonctions d’ondes associées.

On construit d’abord la fonction d’onde associée a deux spins %

11,11
11 =15 35 3)

1 11,1 1 1 1,11
\10>:ﬁ<\§§>§—§>+’§—§>\§§>>
o)== (13305 -3 15 ~ 3 5))

1 1.1 1
1 -1=I5 -5 3

On combine le 3¢ avec le triplet et le singlet. Le nombre entre parenthéses étant la valeur de j’.

22y =111)l5 3)
|§§<1>>—7|11|— -3 \ﬂlo
2 _twy= ol )+l -1l 3)
3
|— = —1|— —5>
S(0) = fu Dz —3) - 75105 3)
|5 —%( )= =10l —§>— S -Dl3 5)
11 11
%5(0)3 =0 0)l5 §i 1
3 50 =005
33 11,11 11
55 =15 35 3015 3)
20 == (13 213 13 — 2 +15 313 - 315 2415 - 203 I3 3)
3 -5 =2 (5305 -5 -+5 -5 35 -+ -l ~ Pz 3)
3 3 1 1.1 1.1 1
5 s =I5 =35 —35 —3)
33 =22 D IS D+ el DIk - DR B lE D B
AL R LIE (L[S SUYCIL IS (L LS
11 1 111 1,11 1 1,11, 11
30 =7 (595 ~739 15 ~ 213 915 9)
5 -5 =75 (5305 -5 915 -5 3l - )
Les états du quadruplet sont symétriques. [33(1)),[31(1)),12 — (1)), 12 — 2(1)
Les états du doublet correspondant & j'=1 sont mixed-symétriques : [33(1)), |3 — (1))

1
2
Les états du doublet correspondant & j’=0 sont mixed-antisymétriques

ENS - Lyon 5) M1 - Symétries et Particules




3- On veut déterminer les constantes de structures de SU(3), c’est a dire les fu. tels que
[Aa/2, Ab/2] = ifapeAc/2. O les \; sont les matrices de Gell-Mann génératrices de SU(3).

010 0 —i 0 1 0 0 0 0 1
AMM=11 00 =117 0 0 A3=10 -1 0 M=1]0 00

0 0 0 0 0 O 0 0 O 1 00

0 0 —i 0 00 0 0 0 1 1 0 O
M= 0 0 0 =110 0 1 AM=10 0 —i d=—1 01 0

i 0 0 010 0 7« 0 V3 00 =2
— Combien y a-t-il de constantes fup. 7

8 X 8% 8=512

— Montrer que les matrices de Gell-Mann obéissent a la normalisation tr(A;A;) = 26;5, ot d;; est
le symbole de Kronecker.

Produit de matrices C;; = Z A By
k

Trace = somme des éléments diagonaux, pour un produit : ZC” = Z ZAikBki : commutatif en
i ik
AB.

Les matrices de Gell-Mann sont soit symétriques A;; = Aj; soit antisymétriques A;; = —Aj;.

Les matrices symétriques sont A1, Az, Ag, A\g et Ag, les matrices antisymétriques sont Ao, A5 et A7.

La trace du produit d’'une matrice symétrique par une matrice antisymétrique est nulle.

La trace du produit de 2 matrices symétriques vaut ZZAikBik et correspond a la somme des

i k
produits des éléments de matrices. Parmi Aq, A3, Ag, Ag et Ag, seules A3 et A\g ont des éléments de

matrice non nuls au mémes endroit et

Tr(A3)g) = % - % =0

La trace du produit de 2 matrices antisymétriques vaut — Z ZAikBik et correspond & 'opposé de

ik
la somme des produits des éléments de matrices. Les 3 matrices Ag, A5 et A7 ont leurs éléments de
matrices non nuls & des positions différentes.

Donc Tr(A\jAj) =0sii#j

Il nous reste a calculer Tr(A;\;). Les matrices A1, A3, Ay, Ag et g sont symeétriques et leurs éléments
sont rééls. Donc Tr(A?) =Y, 5", A%

Les matrices A1, Az, A4 et A\g ont tous leurs éléments non nuls sauf deux qui valent 1 et donc leur trace
vaut 12 + 12 =2

Tr(A\d) = 3(12+124+2%) = J(1+1+4) =2

Les matrices A9, A5 et A7 sont antisymétriques et leurs éléments sont imaginaires purs. Donc
Tr()\?) == i Az?k =22k ‘Aik‘2-

Leurs éléments sont tous nuls sauf deux dont le module vaut 1 donc leur trace vaut 12 + 12 = 2

On a donc bien TI'()\Z)\]) = 2(51]
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— En déduire que fupe = _ZZTr()\C[)\a, X)) et que fupe est totalement antisymétrique.

.. . 1 —1
Par définition : [\,/2,\y/2] =i Zc: fabeAe/2 = 5 Zc: SabeAe = T [Aas Ab]

1 —i
:GMZNW&ZZMWJM

1 —i
= 5T (Z fabc)\d)\c> = T (A [a; o))

1 i
=5 Z FaveTr (Aghe) = - Tr (Ad [Aas X))

1 —1
:5;nw%=qﬂwmmm

—1
= fabd = ZTY (Ad [Aas Ao))

Pour prouver que fuq est totalement antisymétrique, on utilise les propriétés suivantes des traces et
des commutateurs :

[AB,C]| = A[B,C]+[A,C]| B

[A,BC) = B[A,C]+[A,B]C =[AB,C]+ [CA, B]

Tr(AB) = Tr(BA) et donc la trace d'un commutateur est toujours nulle.

Si on permute a et b, le commutateur Qhange de signe. On a bien fopa = — foad- A
Si on permute b et d, faw = FTTr(M[Aa;Ad]) = FTr(Aa;AalXe) = FTr([Aa, Aads]) +
1T (A [Aas Ao]) = — faba ' ' A
Si on permute a et d, foe = FTITr(Aa[Aa,X]) = FTr(Aa; ] Aa) = FTTr([Aade, X)) +

ﬁ'TI' (Ad P‘aa )‘b]) = _fabd

— Calculer les fgpe -

fraz =1
Jass = fors = @
frar = fi65 = foae = fos7 = faus = far6 = 3

3 Isospin

1- On note p:& et po les opérateurs de création et d’annihilation d’un proton dans l'état |a). On

note ny et ng les opérateurs de création et d’annihilation d’un neutron dans I'état la). Ces
opérateurs vérifient les relations d’anticommutations {pa, 10T } = pap}; + p};pa = 008, {p:rx, 10T } =
0, {pa,ps} = 0 et des relations similaires pour nl, et Ne. Les opérateurs concernant un proton

anticommutent avec ceux concernant un neutron.
— Donner I’expression de 'opérateur T, échangeant un neutron par un proton.

Ty = Z pgna
e
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— Donner I’expression de 'opérateur T_ échangeant un proton par un neutron.

= Z n:rxpa
[e%

— Calculer T3 = [T}, T-].

Ty = (14, 1]
- T+T7 - T,T+

= 2 phnanips = >3 nipaphns
a B a B
= 33 (phnanb)ps - nh(paph)ns)
a B
— T (5a—nl i (5 — ot
P (0ap nﬁna)pg 14 (0ap pgpa)nﬂ
[0}

- zz( bapDp — Plnlinaps — nldagns + pnknapa)

a B

= ZZ(S (papg — nTn5>

B

I
QM °

<p:rxpa —n alla

— Calculer [T5,T4] et [T3,T_]

[} pas Plms

]

phpapins — plinsplpe

phpaping — phplpans

phpaplns + pipipans

Pl {pa,p}g} ng

5&6]924”6
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[ n Dlyg]

= n nap;ng — p;ngnT Ne

T ot
T Tl

pgéaﬁna

= NYNaPgng + NePsnang — pgéagna

T
«
= nLnap5n5 + PgnaNpna —
t
«
t

.I.

= N4NaPng — nfxnapgng - pgéagna

= —5015]9}3“04

ENS - Lyon

T3, T,] = ZZpapmpgng ZZ nna, phng)
= 2 Z SapPhns + 3.3 5‘15]95”0‘
o B o B
= 2} Phna
«
— 2T+
phpasnips] = phpanips — nlpsplpa
= plpanfips + nlpipspe — nldaspa
= phpanips + pintpaps — nhdaspa
= phpanips — phpankps — nldaspa
= _5046“}3]904
[nf ne, };pﬁ] = ngnangpg - ngpﬁn:&na
= nLnQnTﬁpB - nLnTﬁpﬁna
= nLnQnTﬁpB + nLnTﬁnapﬁ
= TLL {na’ nTﬁ} bg
= 6aﬁnivpﬁ
B 1) = 3 Z[Papa’ sl = 2 Z n T3]

- Z Z 6aﬁnﬁpa - Z Z 6aﬁnapﬁ
a  f a f

-2 Z n:gzpa
«a

=27
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1

1
T ,t3=-T
\/5 3 9 3

— Quelle est 'algebre engendrée par les opérateurs ty = —=T,t_ =

V2

1 1
[t+7t—] = §[T+7T—] = §T3 =13
11 11
[t3,t4] = §E[T3,T+] = 5—22T+ =t
11 11
[tg,t_] == §E[T3,T_] == 5—2(—2)T_ == —t_

C’est ’algebre SU(2) de I'isospin.

2- Le proton et le neutron sont des états d’isospin I = 1/2 Les A des états d’isospin I = 3/2, de
masse M = 1,232GeV, et les pions, des états d’isospin 1 = 1.
— Comparer les amplitudes des processus
7t +p =7t +p
T +p—7T +p
T +p— 70 +n
en fonction de 'amplitude des processus idéaux M/, et My o

On a trouvé en 2l2-]1a combinaison de 3 spins :%, ici on a 3 isospins %, ce qui donne la méme chose.

Plus précisément, on & une combinaison du pion (isospin j=1, m=-1,0,1) avec un proton (isospin
j=1/2 m=+1/2) ou un neutron (isospin j=1/2 m=-1/2)

Les coefficients et les décompositions se lisent dans la table des Clebsch-Gordan.

p-+ 7" correspond & |5 $)[1 1) =|33)
p+7 correspond & |3 )1 —1) = /1

n+ ¥ correspond a |1 — 3)[10) = %’

Puisque lintéraction forte conserve l'isospin, (3m|M|im) =0
On a Msjs = (3m|M|[3m) et My /o = (3m|M]|gm) donc :
(mF + pIM|Tt +p) = Mz

(7" +pIMr™ +p) = 3 M3 + FMy o

(77 + pIMIT® + ) = P My — P My

— dans le cas on I'énergie dans le centre de masse vaut 1,232GeV (voir les données expérimentales
de la Figure [I montrer que

oot (17 +p)

Ttot (T~ +p)
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oot (™ +p) (" + p|M]x™ + p)?
otot(m™ +p)  {rT +pMlrT £ p)? + ({70 + n|M|rT +p)?
3/2|
51 M3 +2M1/2’2 2 Mo — My
9|M3/2|
- 3| Ms ol
Le A est connu de 1=3/2, donc M35 >> M5 pour Ecp=1,232 GeV.

Symmetries

CEL SR TR SR AR RS S P R G B
190 |- (1232) -
180 |- =
170 - -
160 |- -
150 ]
140 |- 5

0y, (mb)
B
)

(1688) T P

1625 £
( sl ’ / (1920)

\ i (2190)

e

{ I i i3 1 | 1 T | L 1
900 1100 1300 1500 1700 1900 2100 2300 250t

Mass of 7 p system (MeV/c?)

FIGURE 1 — Section efficace totale mesurée de diffusion pion sur proton [I] en fonction de la masse
invariante du systéme.
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O'Z‘O'j:(Sz‘j—i-izgiijka (_’ & b O_:)
k

Matrices de Pauli
D
a-

1
0 _
b+

Qu

ENS - Lyon 11 M1 - Symétries et Particules


http://hal.archives-ouvertes.fr/docs/00/09/29/68/PDF/cel-41.pdf

O';-r =0, =0, ", e =cos +i(0.5)sin 0
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32. Clebsch-Gordan coefficients 1
32. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
) JJ
Note: A square-root sign is to be understood over every coefficient, e.g., for —8/15 read —4/8/15. Notation: M
m m
1/2x1/2 | = . - 1o
= —('()g 5/2 .
Fozezl 1l o o 2x1/2 o Y my  mgy | Coefficients
|+1/2 -1/2[1/2 172] 1 [+2 1/2] 1372 +3/2
-1/2 +1/2]1/2-1/2]-1 vl = 8— sin 0 et +2-1/2|1/5 4/5] 5/2 3/2
|-1/2-1/2] 1 +1 +1/2|4/5 =1/5 |+1/2 +1/2
5 /3 +1-1/2| 2/5 3/5| s5/2 3/2
Yy = _(‘ cos® § — _> 0+1/2 | 3/5 -2/5]-1/2 -1/2
> ar\2 2
1x1/2 v3/2] 32 12 5 | 0-1/2| 3/5 2/5]| 5/2 372
[+1 +172] 1f1/2+172 Yo = /_ sin 0 cos 0 et -1 +1/2] 2/5=3/5|-3/2 -3/2
2 -1-1/2| 4/5 1/5| 5/2
+1-1/2| 1/3 2/3| 3/2 172 3/2x1/2 |
0+1/2| 2/3-1/3}-172-172 1 /15 / 22 koo 1) o] s as|oei
v2 — 522 in2ge2i¢ [#3/2 +1/2] 1]+1 +1 =12 -
0-1/2| 2/3 1/3] 3/2 2 4\ 27
L a1r2| 173 -23|are +3/2-1/2 178 3/4] 2 1
Y E =R +1/2 +1/2[3/a-1/4] 0 o0
+3 3 2 3/2)(1 +:;§ 5/2 3/2 +1/2-1/2|1/2 1/2 2 1
lz2+1] 1]+2 +2 [ i|+3/2 +3/2 ~1/2+1/2|1/2-1/2] -1 -1
+2 01/3 2/31 3 2 L +3/2 0| 2/5 3/5]s/2 32 172 -1/2-1/2|3/4 1/4] 2
+1 +112/3-1/3] +1  +1 41 +1/2 +1| 3/5 =2/5|+1/2 +1/2 +1/2 —-3/2 +1/2| 1/4-3/4]-2
+2 -1{1/15 1/3  3/5 +3/2-1|1/10 2/5 1/2 |-3/2-1/2] 1
1%x1 E +1 0(8/15 1/6-3/10| 3 2 1 +1/2 0| 3/5 1/15 -1/3| 5/2 3/2 1/2
|_+2 2 1 0+1|6/15 —-1/2 1/10| o0 0 0 -1/2+1[3/10 -8/15 1/6|-1/2 -1/2 -1/2
M N R +1-11/5 1/2 3/10 +1/2 -1[3/10 8/15 1/6
+1 ofi/2 12 2 1 o 0 o|3/s 0 -2/5 32 1 -1/2 0| 3/5 -1/15 -1/3| 5/2 3/2
0 +1(1/2-1/2 0 0 0 —-1+41|1/5 -1/2 3/10 -1 -1 -1 -3/2 +1|1/10 -2/5 1/2}-3/2 -3/2
+1-1{1/6 1/2 1/3 0-1|6/15 1/2 1/10 |—1/z—1 3/5 2/5| 5/2
0o of2/3 o-1/3] 2 1 -1 o|e/15 —1/6-3/10| 3 2 -3/2 0| 2/5 =3/5|-5/2
-1+1|1/6 -1/2 1/3|-1 -1] _ -2 +1|1/15 -=1/3  3/5| -2 -2 |_3/2 1 1
“m 0-111/2 1/2) 2 -1-1(2/3 1/3] 3 — —
Y, = (=)™ |- o212 e - -2 0|1/3-2/3]-3 (j1jemima|j1j2J M)
—1 - o—imd _o _ _ J—j1—Go /5 s L )
| EREREY pre Vorr1 e mo L2l = (=1)7 772 (Gagimama | jaga T M)
J _ m—m/ jJj _ g7 3/2%X3/2 3 1+ cos®
m/m (-1 dm m/ —m,—m/ / / +3] 3 2 d(%O = cosf d}g 12 = Ccos — d% 1=—F—
32232 1|+2 +2 ’ J 2 ’ 2
2X3/2 |12 3/2+41/2| 172 12| 3 2 1 1/2 .0 1 sinf
/2 7/2 5/2 +1/2+3/2] 1/2-1/2 | +1  +1 41 d1/271/2 —sing dig=— NG
[r2+3/2]  1fesr2+45/2 s 2
+3/2-1/2[1/5 1 1 .
+2+1/2| 3/7 a/7) 172 s5/2 3/2 154175 |38 0 25 3 2 T o al 1 —cosf
+1+3/2] 4/7-3/71+3/2  +3/2 +3/2 —1/2+3/2 |1/5 =1/2 3/10 0 0 0 0 1,-1 2
+2-1/2) 1/7 16/35 2/5 +3/2 -3/2 |1/20 1/4 9/20 1/4
- +1 1/2| 4/7 1/35-2/5| 7/2 5/2 3/2 1/2 i1/2 _1/2 |9/20 1/4-1/20-1/4
2X2 N 3 0 3/2| 2/7-18/35 1/5| +1/2 +1/2 +1/2 +1/2 175 +172 |9/20 174 ~1/20 1/4 3 > T
221l +3 +3 +2-3/2| 1/35 6/35 2/5 2/5 -3/2 +3/2|1/20 -1/4 9/20-1/4) -1 -1 -1
— 1 — +1-1/2|12/35 5/14 0 -3/10 T1/2-3/2| 1/5 1/2 3/10
0 1/2(18/35 -3/35 -1/5 1/5| 172 s/2 3/2 /2| |15 0535 0 Sos[ 3 2
t1+2)1/2-1/2) 42 +2  +2 -1 3/2| 4/35-27/70 2/5 =1/10|-1/2 -1/2-1/2 -1/2 _3/241/2| 1/5-1/2 3/10| =2 -2
+2 0|3/14 1/2 2/7 +1 —3/2| 4/35 27/70 2/5 1/10
+1 1| 47 0-3/7 4 3 2 1 0 —1/2 [18/35 3/35—-1/5 —1/5 |—1/2 -3/2{1/2 1/2] 3
0 2|(3/14-1/2 2/7 +1 +1 +1 +1 -1 1/2 [12/35 —5/14 o 3/10| 7/2 s/2 3/2 —-3/2 -1/2|1/2-1/2|-3
(2 —1|1/14 3/10 3/7 1/5 2 3/2|1/35 —6/35 2/5 —2/5|-3/2 -3/2-3/2 Far2-3/2] 1
+1 0| 3/7 1/5-1/14-3/10 0 —-3/2| 2/7 18/35 1/5
0 1| 3/7 -1/5-1/14 3/10 4 302 1 0 1 =172 a7 =1/35-2/5| /2 s/2
-1 2 |1/14-3/10 3/7 -1/5 0 0 0 0 0 > 12| 1/7-16/35 2/5| 52 —s/2
+2 -2 1/70 1/10 2/7 2/5 1/5 -1-3/2 4/7 3/7) 7/2
+1 -1 | 8/35 2/51/14-1/10 -1/5 —2-172| 377 —as7b12
0 0 [18/35 0 -2/7 0 1/5
-1 1 8/35 —-2/5 1/14 1/10 —-1/5 4 3 2 1 -2-3/2 1
32 1+ cosf Q -2 2| 1/70-1/10 2/7 -2/5 1/5] -1 -1 -1 -1
3/2,3/2 2 2 +1 -2(1/14 3/10 3/7 1/5
1+ cosf\2 0 -1| 3/7 1/5-1/14-3/10
a3? :,\/31+—°°5€S- 0 d§2:(‘—> -1 o 3/7 -1/5-1/14 3/10| & 3 2
3/2,1/2 2 2 ’ 2 -2 1|1/14-3/10 3/7 -1/5| -2 -2 -2
_ 1+ cosf
3/2 _ 1—cosf 0 42 B sin 6 0 -2|3/14 1/2 2/7
A5 12 = % 5 983 21 2 -1 -1]4/7 o0-3/7| &4 3
. 08 2 0[3/14-1/2 2/71] -3 -3
3/2 1—cosf . 6 5 Ve d? :—1+wb€(2cos€71)
d3jo_3/2 =~ in 5 dyg= ;- sin”f 1,1 -1 —2|1/2 12| 4
/2,-3/ 2 2 > 4 -2 -1|1/2-1/2]-4
3/2 3cosf —1 0 9 1—cosf |, 2 3 . [-= 2] 1
[ — - _ = — — Sin
dY21/0 = 5 o8y d; _, = 3 n diy 5 sind cosd
3/2 3cosf+ 1 0 1—cosf\2 1—cos@ ) 5 /3 5 1
111/271/2 g sing d2 2=(—5 d?_, = (2cos@ +1) do = 5 cos 975

Figure 32.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley ( The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.
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m070.dvi - rpp2012-1ist-J-psi-1S.pdf

Citation: J. Beringer er al. (Particle Data Greup), PR D86, 010001 (2012) (URL: http

http://pdg.Ibl.gov/2012/1istings/rpp2012-1i st-J-psi- 1S.pdf
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Decays involving hadronic resonances
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Kt K70
Mog KTK*(892)” + cc. — (30 +04 )x1073
_ KOK=7F
Mo KOK*(892)°+ cc. (430 £031 )x 1073
M6 KOK*(892)0 + cc. — (32 04 )x10-3
KVKErF
Moy Kq(1400)F KT (38 =14 )x1073
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Mag  by(1235)=7F [b] (30 £05 )x10=3
M3 wK*KL7F [b] (34 +05 )x10—3
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My oK (892)K+ cc. (218 £0.23 )x 1073
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M1 - ENS Lyon
Symétries et Particules
Année 2013 - 2014- Semestre 2b
TD 2 : Modéle des quarks

4 Fonctions d’onde

1- Dans SU(3),3®3®3 =1008@ 8@ 1. Le décuplet a une fonction d’onde symétrique. Quel peut
étre son spin 7 Comment imaginer que cela ne viole pas le principe de Pauli?

On a les A dans le décuplet. Symétrique en échange des quarks, symétrique en spin (donc 3/2). La
fonction d’onde de couleur est antisymétrique.

2- Ecrire la fonction d’onde spin/saveur du proton.

Soit la fonction d’onde du proton. La fonction d’onde totale du proton s’obtient en construisant la
fonction d’onde symétrique, par exemple, de la fagon suivante pour le proton avec une projection de
spin +1/2.

. 1 1
|spin),, = ‘J =5 My = +§>p

fonction d’onde de spin qui peut se réécrire comme le produit de la fonction de spin d’une paire de
quarks (uu, par exemple) et de la fonction d’onde de spin du quark restant (d ici).
1

11 \/5 1 1 11
_7+_ - Y 171 a' A - T = 170 a’a

Les facteurs dans I'expression ci-dessus sont les coefficients de Clebsh-Gordan pour le couplage d’'un
spin 1 avec un spin 1/2. La fonction d’onde correcte pour un état triplet

1
V2

la fonction d’onde du proton s’écrit dans la notation saveur-spin :

‘%, +%>p = ‘pT> = \/g ‘uTqu¢> — % ‘uTu¢dT> - % ‘u¢quT>

Cette fonction est uniquement symétrique pour I’échange des deux quarks u, ’expression totalement
symétrique s’obtient en ajoutant les termes dans lesquels le premier et le troisiéme quark et le deuxiéme
et le troisiéme quark ont été échangés, soit :

1,0) = —= (1) + 1)

‘pT> = \/% {2 ‘uTqu¢> +2 ‘quiuT> +2 ‘diuTuT> — ‘uTuidT>

_ ‘quTu¢> _ ‘dTuTu¢> _ ‘uiquT> _ ‘u¢dTuT> _ ‘ dTu¢uT>}
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3- Le conjugué de charge du doublet d’isospin (u, d) est le doublet (—d, %). On considére ’association
d’un quark et d’un anti-quark (meson) en se restreignant aux saveurs u,d, s. L'interaction forte
respecte la symétrie de saveur SU(3). Donner le contenu en quarks des mesons 7, K,n,7', et

préciser leur position dans un diagramme (Y, I3).

Y=B+S, donc pour des mésons on a Y=S. Sur le diagramme ci-dessous on a I3 en axe horizontal.

K° K

S=0 —_——— e

Le contenu en quark est :

K~ (su)K°(sd)

Pour les isospin 3 nul et hypercharge nulle, on a :

70 :% (uﬂ — dJ)
78 :% (uﬂ +dd — 235)
m :% (uii + dd + s5)

SU(3) est brisée et on a mélange de ng et 1y :

1 = cos Ong — sin O
n! = sin Ong + cos Oy

Avec § = —10.1°, on a n ~ ng et n/ ~

5 Masses et moments magnétiques

1- — Montrer que le moment magnétique du proton s’écrit p, = %(4;@ — [d), O [y et pig sont les

moments magnétiques respectivement des quarks u et d.

ENS - Lyon 16
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La fonction d’onde spin-saveur du proton est donnée dans 'exercice I2=1 ji = q/mc§ avec [, =
qh/2me. Pour les quarks on a p,, = 2/3 eh/2myc, pg = —1/3 eh/2mgc et pp, = (p T | (1 +p2+p3):|p T
) = 2/h2(p T |piSiz|p 1), ont S;. est la projection selon z du spin du i-éme quark. On trouve

)

1
Ky = 1_8(4X(Mu+ﬂu_ud)X3+(MU_'U'U+Md)X6)
— L (41 — 6p0)
= 18 n Hd
4 1
= 3,Ufu 3,U’d

Pour le neutron, il faut intervertir le contenu en u et en d. On trouve 4/3p,-1/3pug pour le proton et
4/3ug4-1/3u, pour le neutron.

— Dans l'approximation m, = mg, donner le rapport des moments magnétiques du neutron et

du proton. La valeur expérimentale est Hn _ —0.68497945 £ 0.00000058
Hop

fn/ptp = —2/3 = —0.666

2- Dans le modeéle des quarks, on peut écrire la masse d’un méson ¢;go comme égale 4 :

9.-9,

M(q1q2) =mi+mo+ A
mime9

2
ol A =159 x 42;“ MeV /c? est une constante et ?Z le spin d’un quark. En utilisant les masses

habillées suivantes pour les quarks : m, = mg = 308 MeV/ c? et mg = 483 MeV/ c2, calculer la
masse des mésons 71, K9 pt, K*0, ¢ et comparer avec les valeurs mesurées.

?1 . ?2 = % <?2 — ?% — ?%) ol ? = ?1 + ?2. Les quarks ont un spin demi entier donc ?? =

% (% + 1) h? = %h2. Les 7t et K° sont des pseudoscalaires (S = 0 = ?2 = 0) et ont donc ?1 . ?2 =
—3p%. Les pT, K*0 et ¢ sont des vecteurs (S =1 = 52 = 1(1 + 1)h% = 2h?) et donc ?1 : ?2 = in%
On trouve :

M(zt)y = 2m, + 159 x 4;”25 X =3l o = 2my — 3 x 159 = 139MeV  ~ 140MeV
M(K®) = my +mg — 3 x 1592 = 308 + 483 — 3 x 159508 = 48TMeV  ~ 498MeV
M(p") = 2m,, + 159 = 775MeV ~ T7T0MeV
M(K*%) = My + M + 159 = 892MeV ~ 896MeV
M(p) = 2ms + 159’;—§ = 1031MeV ~ 1020MeV
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M1 - ENS Lyon
Symétries et Particules
Année 2013 - 2014- Semestre 2b
TD 3 : Interaction Faible

Rappels matrices gamma

Les matrices ~ sont des matrices 4 x 4

Propriétés :

Quelques relations :

75 = 270,)/1,)/2,73
g _ 7 0
L0 7
v Z v 4
ot = 3 (v =)
d = QY
2 5\2
O =1 O =1 () =L i _ o
T ,.YZT — _,.Yz '75T — ,.Y5
ey —4 ;o =0
M )
YRy ATyt =29 ;o AP ¥d =2a-b
TV =2 P =24
fy“fy”;\yAfyM = 4g”)‘ R ; Yo P =4da-b
VAN = =2 s AP =240 4

Traces des matrices gamma : la trace du produit d’'un nombre impaire de matrices v est nulle.

On a Tr(y*) = 0; Tr(v°

Tr(v“w
Tr(yHy"y
Tr(d ¥ ¢ d
Tr (7241
Tr (7 99" 7

)
%)
)
)
77)

) = 0; Tr(Iy) = 4.

Relations avec les spineurs :

ENS - Lyon

= 4gM ; Tr(d ¥) =4a-b
— 4 [g,ul/g)\o _ g,u)\gua 4 g,uagl/)\] :
=4[(a-b)(c-d) = (a-c)(b-d)+ (a-d)(b-c)]
=0 ; Tr(y* d§) =
= 4ighvAo c Tr(Y d Y ¢ d) = 4ie" a,ubyend,
u = uWO v = vWO
(p—mec)u =0 (B+me)v =
u(p—me) =0 o(p+me) =
uu = 2mc v = —2mec
St u®a) =g+ me Zs:ﬂiv(s)ﬂ(s) =% — me
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Formules de Casimir :

> [#@alvue) [GaT2us]* = Tr [T1(By + mpc)Ta(Fa + mac)]
SPina,SPiny

D [Balvw] [Bal2us]” = Tr [C1(#h + mpe)To(Ba — mac)]
SPiNa,SPiny

> (@l [@alawp]" = Tr [D1(# — mu0) T2 (Pa + mac)]
SPiNa,SPiny

Z [@aflvb] [@afgvb]* =Tr [Fl(ﬁb — mbc)fg(]zfa — mac)]

SPing,SPiny

ou I'; et T's sont des matrices 4 x 4 et ou ['; = VOI‘;WO

6 Reégles de Feynman

6.1 Rappel des régles de Feynman pour QED

Nous rappelons les régles de Feynman pour QED. Pour QCD et l'intéraction faible, le schéma, de
calcul est le méme, seules changent les expressions des vertex et des propagateurs. Les vertex pour
toutes les intéractions du modeéle standard sont donnés dans la section [6.2]

1- A chaque ligne externe, associer un quadri-vecteur énergie-impulsion p1,...,p, et rajouter une
ﬂécheindiquant la direction positive dans le tempsﬁ. A chaque ligne interne associer un quadri-
vecteur énergie-impulsion q1, ..., Gy

2- Les lignes externes contribuent des facteurs :

_ Flectrons { Entrant : u fleche vers le vertex
Sortant : u fleche sortant du vertex
Entrant : v fleche sortant du vertex

_ Posit N
OSILrons { Sortant : v fleche vers le vertex

E :
 Photons ntrant ef
Sortant : €,
3- Vertex : Chaque vertex contribue un facteur igy" ot g = —g+/47/hc ou q est la charge de la

particule (et non de anti-particule). Pour les leptons chargés ¢ = —e et donc g = v4ma mais
pour les quarks u on a q=2e/3 et pour les quarks de type d on a q=-e/3

i(’Y”Qu + mc)

5 5 pour les fermions et
q

4- Propagateurs : chaque ligne interne contribue un facteur 5
—m?c
¢

pour les photons (avec les indices se contractant avec ceux des lignes fermioniques que le

propagateur connecte).

5- Conservation de I’énergie et de I'impulsion : Pour chaque vertex on écrit une fonction delta de
la forme (27)*6%(k1 + ko + k3) o1t les k sont les énergies-impulsions entrantes dans le vertex (un
signe moins pour les énergies-impulsions sortantes)

6- Intégrer sur les énergies-impulsions internes : pour chaque ¢; écrire un facteur éiq)il

7- Simplifier la fonction & : Le résultat incluera un facteur (27)*6*(py + pa..... — p,) correspondant
a la conservation énergie-impulsion globale. Simplifier ce facteur et multiplier par i pour obtenir
M

8- Antisymétrisation : Inclure un signe moins entre deux diagrammes qui ne différent que par
I’échange de deux electrons (ou positons) entrants (ou sortants), ou par I’échange d’un électron
entrant avec un positon sortant (ou vice-versa).

1. différente de la fleche dénotant le courant fermionique.
2. Cette fleche du temps permet de distinguer les lignes entrantes des lignes sortantes.

ENS - Lyon 20 M1 - Symétries et Particules



6.2 Régles de Feynman (a l’arbre)
6.2.1 lignes

‘ ligne externe entrante ligne externe sortante

scalaire (spin 0) rien rien
fermion (spin 3) u U
anti fermion (spin 3) v v
vecteur (spin 1) € €
ligne interne (propagateur)
lai : i
Scalalre (Spln 0) m
fermion (Spln 5) m
. _iguu
vecteur sans masse (spin 1) 5
q
. - ququ
. . —t9uw + Zm2c2
vecteur massif (Spln ].) W

6.2.2 vertex

Les vertex sont tirés de D. Griffiths, Introduction to Elementary Particles, Wiley Ed., 2008 (annex
D.3).

QED

ig.y" (g = V4na)

ENS - Lyon 21 M1 - Symétries et Particules



ENS - Lyon

QCD

oy L

L LgY A }/“

—g " [guoltr — D2)n + Bualdz — @3
+gu (a3 — 1))

—igZ [P Y (g0 Bup — BunBir)
+f M”f ’:M (BuvBrp — BurBup)
b 1 ﬁ"’(gﬂngnl — B
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Intéraction faible

& . _ B

B = nte BT Sntcorty

%y“(l — %) (Here lis any lepton, and
vy the corresponding neutrino.)

%i%i}’“(l —¥3)V; (Herei=u, ¢, ortandj=4d, s
' or b; Vis the CKM matrix.)

q'i‘”s qj+2.'3
Z 1;‘3—’}/“(5{, = L’;ﬁ) Here f is any quark or lepton;
cy and ¢, are given in the
z 3 following table:
f Cy cA
Ve, Yy, Vo % %
T w%—l-ZsinZE?w —%-
u, c, b % — % sin® Ow 15
d, s b _,% + % gin® 6, —%
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18w €os Oylgun (91 — q2)u
+g;41(512 = ‘13)1' + gf“'(q“l' "5 q]}}‘]

v o

w- g
W 5 — lgi COSZ ()w(zg,wg)m — BuiBuo — g,mgw.)

H A

v o
W- w-
igﬁ,(zgﬂ)\gm = g,'u'g)\rr = g;mga-x)

W+ w+

I A

gl — g2
(82 = 3] o+ Guvlts — 1]

- igf(zg.rwgkrf = BuiBver — Guofur)

- igﬁgw Cos 91;-(2g;w€m - EurBeo = g,urrgul)

7 Taux de désintégration du muon

Un muon d’impulsion ¢ se désintégre en e.v, par l'interaction faible. Le ;1 en se transformant en
vy, (d'impulsion py) par I'emission d’'un W~ virtuel ( = hors-couche, I’énergie P‘(}V et I'impulsion P du
W sont telle que (P°)2 — |P]2 < m?,). Le W se désintegre rapidement en et,, d’impulsions ps et ps.

On veut calculer le taux de désintegration du u. On va négliger les masses des fermions dans 1’état
final, on travaille dans le réferentiel du y, et on néglige P? par rapport m%,[, dans le propagateur du W.

1- Dessiner le diagramme de Feynman.
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2- Ecrivez I'élément de matrice M(u — er.r,), en négligeant I'impulsion du W, c’est a dire, on
utilise 'approximation d’ interaction de contact entre quatre fermions gauches. Vous obtenez
M(p — ever,) de M(n — pe” ) (du cours).

M(p — every,) = % [T,77 (1 = 7°)uy] [Gevo(1 =)0y, ]

3- Démontrer une des formules de Casimir.

Je consideére la formule :
A= Z [ﬂarl?}b] [ﬂarg?}b]*

SPiNg,Sping

Puisque les éléments entre crochets sont des nombres complexes (matrice 1 x 1), on peut écrire :

[ﬁangb]* = [ﬁal“gvb]T

et donc
_ * -'- 0 T
[agTovp]* = [ua*y ngb]
_ ’UbFT OT
= vbl“;'y Ug
= v}7%7°T1 u,
= vbr2ua
d’o,

A= Z [ﬂarl?}b] [T)bfgua]

SpiNng,Spinyg,

= Z Ug'1 Z VpUp fzua

Sping sping
= E U1 (B — mpc)Toug
Sping
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En utilisant le fait que les spineurs sont & 4 composantes et que Q = I'1(#, — mpc)['2 est une matrice
4x4,0n a:

1
A=) iQijua

sping ©,J=1

1
=D Qijttajtia

sping ©,J=1

4
= Z Qij Z UgUq
i,7=1 Sping, i
Le passage de la premiére & la deuxiéme ligne ci-dessus est possible car les composantes sont de simples
nombres et que le produit des nombres est commutatif. A la troisiéme ligne, on considére la matrice
4 x 4 dont I'élément ji est donné par des produits de la composante j de u, par la composante ¢ de
Ug. On profite du fait qu’on a 2 sommes sur les indices des matrices 4 X 4 et spineurs pour passer du

produit de matrice 1 x 4% 4 x 4 x4 x 1 a une trace d’'un produit de matrice 4 x 4 x4 x 4.

4
A= Z Qij (Yo + mac]ji
i,j=1
= Tr[Q(%a + mgc )]
= T[Ty (#p — mpc)Ta(Pa + mac)]

4- Mettez ’élément de matrice au carré pour un muon non polarisé.

Pour un muon non polarisé, on doit faire la moyenne sur les 2 états de polarisation du muon (facteur
1/2). On doit aussi faire la somme sur tous les états finals de polarisation (sans faire la moyenne).
D’ou,

1
M| = 3 > M (i B ) M(p — evevy,)

all spins

F Z uV,fY 75)71’#] [ﬁVu7a(1 - 75)21“]* [ﬁe')/a(l - '75)7}1/@] [ae')’a(l - 75)Uue]*

all spins

= CET [37(1 =)y + 0 (1 =27) ] Tr [r0lL =7 a1 = 7°) 1]
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ol on a utilisé :
— :
(1 —75) =" [y*(1 = ~°)]" "
=70(1 =Nyt

_ ,YO,YOJT,YO o ,YO,YST,YO(T,YO

— ,ya _ 707570{T70
_ ,yoz + ,YS,YO,YOJT,YO
— ,ya _}_,75,704
_ ,ya o ’)’a’)’5
=71 -7

donc nulle. II reste a calculer les traces :

Tr [17(1 = 47" (1 = 77" =T [y7(1 = 49)(1 = 77)

= 2Tr |57 (1= 77}y’ y "

)

0.0 QK

Tr [70(1 o 75) ﬁﬂrya(l - 75) ﬁl/u] = p#équNTr |:ry<7(1 - 75)75

O 0, K

RN

Le terme en m,, correspond & la trace du produit d’'un nombre impair de matrice gamma. Sa trace est

(1 - 75)7””}

|

= 2Tr (14 4)777"7°7"]
-8 (gaégom o gaagéﬁ + gangéa + igaéan)
Donc,
Tr [Y7(1 =7°) By (1 =°) By, ] =8 (piup,‘i‘ + 05 07— (Pu, - D)9 + ie"‘sa“pwp%)
De méme

Tr [ (1 = 7°) #ooval(l —7°) Pe| =8 (peopuea + PeaPre, — (Dve " Pe)Joa + z'eogmpfeli)

Ne sont non nuls que les termes correspondant & la contraction de 2 tenseurs symétriques ou de 2
tenseurs antisymétriques. Les produits symétriques donnent :

64 [2(pu, - Pe) Py - Pre) + 2(Duy, - Pr) (Pp - Pe) — 4(Du, - D) (D - Pe) + 4(Puy, - Pu) (P - Pe)]

goak ocadk

En utilisant ¢ EgBar = € Egafr = —2(5‘%5’; — 5%’5), les produits antisymétriques donnent :

64 [2 ((puu 'pe)(pu 'pl/e) - (pl/u 'pl/e)(p,u 'pe))]

et donc :
. _ Gh
|M| = 764 [4(1)1/“ ° pe)(pu : pl/e)]
= 64G%(py# : pe)(pp : pl/e)
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5- L’espace de phase a n particules en sortie est donné par ’expression :

d3n(pn(q;p17p2,...,pn)—( (q—sz>H ) ;E

ou p; = (E;, cp;) est le quadrivecteur d’une particule sortante et ¢ est le quadrivecteur de I'état

d3pe3
initial. On rappelle que pour une particule de masse m, | d*pd ( m2c4) = 0P 1, largeur
de désintégration du muon en unité naturelle (¢ = 1,4 = 1) dans son référentiel est donnée par
M|?
dl'(p — evevy,) = M ——d®s,
my,

Toutes les particules de I’état final ont une masse nulle. On a :

_ IM]? 454 d*ps d>p Py
T'(p — = 2 — D — Doy —
AT = evevy,) 2m,, @) 0™ (a =1 = P2 = 3) 555 55 | 9, (208 2, (20 )
IM]? 454 d'ps o, 4 d*p d3py
— 20 on)16t (g — p1 — po — ps) 22 5(p2)2
2m,, (@m) 07 (a =1 =p2 = p3) 50 )27 | S0 55 0, (am)8
|M|? o\ B1dE1d) EydEadS)s
= om, (2m)0 (g = p1 = p2)%) 20213 2(2m)3

Il est utile de définir x; = 2F;/m,,. Vérifier que dans ce cas

m2
pi'pj:#(l_xk)
pour ¢ # j # k.
. _1( 4 )2 2 2_1( )Z_mﬁ(l 2pk'pu+pz)_mﬁ(1 2Ek)
Di p]—zpz Dj D pj—2pu Pr) = 9 m;% m,, - 9 m,,

Dans le reférentiel ol le muon est au repos p, = (my,, 6) donc py - pu = Exmy,
On néglige les masses des particules sortantes donc p? = p? = pi =m?=0
La conservation de I'énergie-impulsion implique p, = p1 + p2 + p3

6- Expliquer pourquoi z; doit étre compris entre 0 et 1.

L’énergie minimale d'un produit de sortie est nulle. L’énergie maximale disponible est la masse du

muon mais la conservation de I'impulsion implique qu’une seule particule ne peut en emporter qu’au
plus la moitié.

7- Montrer que |/\/l|2 ne dépend pas des directions des particules finales dans le référentiel propre
du muon.
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|M|? est proportionnel & (Pv,, * Pe) Py - Pue) €6 Py = P, + De + Dy, - Dans le référentiel propre du muon,
Py Pve = myukE,, et

(Pu, +pe)” = m2 + 2py, - e

= 2Py, * Pe

= (P —pu.)’

=m, = 2py - P,
2
£ _ m, By, et

ot on a négligé la masse de I'électron. On en déduit que p,, - pe =

mi m
ERRCE I

donc :
IM|? = 64G%(py, - Pe) (D - D)

2
= 64G> (ﬂ—m E >m E
- F 2 U~ Ve H~Ve

My

— 64GEmM2E,, ( o E,,e)

ne dépend d’aucun angle.

8- On peut faire les intégrales sur les angles de dI'(n — ever,,) en utilisant la fonction § restante.
La direction de py est libre (peut servir pour définir 'axe des z), donc [ d€y — 4m. On définit
cos Oy tel que p - P = E1E5 cos by, done (NB : [doy — 27 )

2 47)(2
dT(1 — evev,) = !;:ZL S(m2(1 = (21 + 2) + %(1 — cos 02))%E1dE1E2dEgdcos 6
2 1 2
_ M e E\dE) EsdEy—s
2m,, 2(2m) me 1T
M2 1 IM|*m,,
= BydEy = =L
2m,, A@n) T = gy M1

9- Montrer que 1 —z1 < a9 <1<2— 2.

0=(q—p1—p2)
= mi —2my By — 2my, Ey + 2py - po
= mz(l —x1 — 22+ (1 —x3))

= mp(2 -z — 3 — x3)
Donc, x1 + z2 + x3 = 2 et chaque z; doit étre entre 0 et 1. Donc,

0<z3<1

1<2—23<2

1<z +20<2
-z <20<2—1

Comme 0 <z <1,2—21 > 1.
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10- Montrer que |M|? = 16GFm x1(1 — x1). Préciser quelle particule est la particule 1.

En prenant pour particule 1, le 7, on a d’aprés les questions précédentes :
2 2,2 m
M = 64GEm> <7“ - El)
1 (mu my, >

_ 2, 2
= 64GFmMmux1§ 7 - T.%'l

= 16G%mﬁx1(1 — 1)

11- Obtenez
G%m‘:’

19273

|M|2m“d:n1d vy — GEmbri(1— x1)
32(2m)3 2(2m)3

m5G2 1— xl) T 1
F:/ dl‘l/ d.%'g
167T3 1—z1
5G2
_ MSr 2
= 167T3 /0 (1 — xl)w1d$1

_ mGE [ }
167 |3 4],

miGE 1

1673 12

mi’LG%

19273

dl'(p — evevy,) = dx1dxs

12- Quelle est son temps de vie en secondes ?

1 19273 x 6.58212 107 GeV s

= — = 2.2 1079 s (il faut réintroduire % pour les unités)
(0,105GeV)5 x (1.166 10-5GeV2)2
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M1 - ENS Lyon
Symétries et Particules
Année 2013 - 2014- Semestre 2b
Article 1 : Ky — 27

8 Symétries C, P et T

1- Préciser le moment orbital et le spin des mesons 70 (JP¢ = 07%), p° (JPC = 177) et a4
(JPC = 11+),

Pour les mésons P = (—1)%*1 donne la parité de L et C' = (—1)+L donne celle de L+S. Donc on a :

Particule | L+S | L | S
70 pair [0 |0
¥ impair | 0 | 1
ay pair |11

2- Le n se désinteégre principalement en n — 2v(39%), n — 37(56%),n — 7ny(5%). Pourquoi
le mode en 27 est-il interdit 7 Pouvez-vous expliquer pourquoi le mode en 37 a un rapport
d’embranchement comparable au mode en 2v 7

La parité G = C - Ry ou Ry correspond & une rotation de 180° autour de ’axe 2 d’isospin. Cela
correspond & transformer I3 en -I3. En général la valeur propre de G est pour les mésons (—1)5+E+,
Les interactions fortes conservent la parité G. Le n a L=0, S=0 et J”¢ = 0~F et I=0. Le 7 est un état
propre de G de valeur propre +1. Le pion est un triplet d’isospin, mais a les mémes autres nombres
quantiques. Le 7 est un état propre de G de parité -1.

Parité de 2r=+1 et la parité de I'n est -1. Comme L et S=0 pour le 7, pas possible de construire une
état de L=1 qui donne J=0. Impossible par interaction électromagnétique et forte.

Parité de 3m=-1, mais G = (—1)% = —1 alors qu’elle vaut +1 pour 7 donc pas OK pour les interactions
fortes. : seules les interactions électromagnétiques sont permises.

C(2y) = (-1)2 =1 Ok P, = —1 mais P(27) * (—1)¥=-1, avec L=1 est possible car S, = 1, donc on
peut avoir J=0 avec L=1 et S=1, la désintégration électromagnétique est possible.

9 Symétrie CP

1- En étudiant la désintégration du muon (4~ — e~ 7.v,) et en vous rappelant qu’il n’existe que
des neutrinos d’hélicité gauche et des anti-neutrinos d’hélicité droite, montrez que si P et C' sont
brisées par l'interaction faible, la combinaison C'P est, a priori, conservée.

Si on applique C a cette réaction, on transforme les neutrinos d’hélicité gauche en anti-neutrinos
de méme hélicité ce qui est impossible. De méme, 'application de P conserve la charge mais inverse
I’hélicité ce qui est également impossible. Par contre, ’application de C'P va donner les bonnes hélicités.
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2- Les kaons neutres produits par interaction forte ne sont pas états propres de la combinaison de
symeétries discrétes CP. On poseﬁ que C|K% = |KY), et on rappelle que les kaons neutres ont
une parité intrinséque négative.

a) Définissez les états propres de CP, KY et K9, a partir des états propres de l'interaction
forte KO et KO, en choisissant comme convention :

CPIKY) = +|KY) et CP|KY) = —|K3).

On a o
CPIK®) = -|K")

puisque les kaons neutres ont une parité négative. On peut poser
|K%) = cos 0| K?) + sin 0| K9) et |K°) = —sin 0| K?) + cos 0| K3)
puisqu’on passe d’une base orthonormée & une autre par une rotation. En appliquant C’p, on obtient :
CP|K®) = cos 0CP|KY) + sin 0CP|KY) = cos 0| KY) — sin 0| KY) = —|K°) = sin 0| K?) — cos 0| KY).
Cette relation est vérifiee par § = 7/4 (mod 7) soit

KO = (D) + |KD)) et [K%) = —=(~|KT) + |K))

Sl
Sl

2

b) Quelles sont les désintégrations possibles des kaons neutres? A quels états propres de cp
correspondent-elles 7

Les kaons neutres se désintégrent principalement en 7% + 7° ou en 7+ + 7. Ecrivons la conservation
du moment cinétique dans ces désintégrations. On a :

Jx=dn+Jn+lene=0=0+0+1Irx

soit l_;m = 0. La parité de ces états finaux est donnée par celle du moment angulaire donc ces états
sont pairs. De plus, ils sont états propres de C' avec la valeur propre +1 (mo 4+ m) ou (—1)} = +1
(my + m_). Ils sont donc états propres de CP avec la valeur propre +1.

Les modes de désintégration a trois pions sont eux états propres de C P avec la valeur propre -1. Si on
conserve C’p, K7 peut donc se désintégrer en 27 ce qui n’est pas le cas de KJ.

c¢) Pourquoi associe-t-on K? a K3 et Kg a KY? Comment se manifeste la brisure de CP et en
quoi cela affecte-t-il la définition des états Kg et Kg ?

3. En fait, c’est une convention. On peut aussi poser : C|K°) = —|K°), mais alors il faut changer les définitions de
K9 et K9 qui en découlent.
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La désintégration en 37 est beaucoup plus longue que la désintégration en 27. La durée de vie de K3
est donc beaucoup plus grande que celle de K9 ce qui explique l'identification de ces particules & Kg
et Kg. La brisure de C'P se traduit par la possibilité de Kg de se désintégrer en 27w. On peut donc
écrire

|KD) =~ |K3) +¢|KY)

a un (petit) facteur de normalisation prés.

10 Production et régéneration des mésons K neutres.

Les mésons les plus légers sont les mésons 7 et K, de masse m, >~ 140MeV/c? et my ~ 500MeV/c?.
Les baryons les plus légers sont les nucléons, le A et les X, de masse my ~ 940MeV/c? , my ~
1115MeV/c? et my ~ 1190MeV/c?. On rappelle les étrangetés de ces particules :

S(A) =8N =5E)=85E")=-1
S(K% = S(KT) =+1
S(K% =S(K™)=-1

1- Quels sont les couples particule/anti-particule ?

Les couples particule/anti-particule sont (K, K°) et (K+, K~). Attention, les ©* ont tous les deux
des étrangetés de -1 et ne sont pas anti-particules I'un de 'autre.

2- Ecrire les réactions de production des mésons K1 et K9 & partir d’un faisceau de pions. Ecrire
les réactions de production des mésons K~ et des K.

On considére les différentes réactions permettant de produire des K. On va montrer que les réactions
faisant intervenir des K% permettent de ne faire intervenir qu’une seule particule supplémentaire
alors que deux particules sont nécessaires pour la création des K, KY.

Réaction CZ—>Cf Bi—>Bf EZ'—>Ef Cx Bx FEx
T +p—-K'+X —-141-0+Cx 04+1—=0+Bx 0+0—>+1+Ex 0 +1 -1
w*+p—>lg++X —-14+41—-4+14+4X 04+1—0+Bxy 04+0—=1+X -1 +1 -1
T 4+p—-K'+X —-141-0+Cx 04+41—=0+Bx 0+0——-1+Ex 0 +1 +1
T +p—-K +X -1+1—--14+Cx 0+1—-0+Bx 0+0—-1+X +1 +1 +1

Dans le tableau ci-dessus C; est la charge A@lectrique. Quelles sont les particules avec une étrangeté
de —1? On a 7%~ A. Pour la premiére réaction, on peut produire un A ou un X% qui ont tous les
deux une charge nulle et un nombre baryonique de +1. Pour la seconde réaction, on peut produire un
37 qui a la bonne charge et le bon nombre baryonique.

Qu’en est-il pour les deux derniéres équations? On doit produire une particule d’étrangeté +1 c’est a
dire K% ou 3. Cependant ces particules n’assurent pas la conservation du nombre baryonique et ne
peuvent donc étre produites seules.

3- On veut produire des mésons K ou K° en bombardant de la matiére par un faisceau de 7.
Quelle énergie doit on choisir si on veut éviter de produire aussi des K~ et des K.
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Comme démontré & la question précédente, les réactions que I'on peut considérer sont

T +p — K94+ A T +p — Kt 4+~

T 4+p - K°+K+n 7T +p - KT+K +n
Les réactions indiquées sur la premiére ligne fournissent des particules dont la masse est plus faible que
celles produites dans les réactions de la seconde ligne. Ainsi, ces réactions possédent une énergie seuil
plus faible. Si on utilise des pions avec une énergie intermédiaire, on ne peut produire que des KT et
des KV et pas des K~ et des K°.
Calculons les énergies des réactions de créations de deux et trois particules. On utilise la masse invari-

ante entre le référentiel du laboratoire avant la réaction et le référentiel du centre de masse apres la
réaction. On a doncH

= (e (2]

(Tr +my + mp)2 —p?

= (Tr+my+ mp)2 —Trn(Tr +2my)
(my + mp)2 + 2Tm,,

alors que
2
pour I’énergie correspondant & 1’énergie seuil. Dans le cas de la réaction 7~ +p — KT+ X7, on trouve

2 2 2 2
_ + 11 — (140 + 94
T (mg +ms)” — (mx +myp)° (500 90) — (140 + 940) ~ 899 MeV
2m,, 2 x 940

alors que pour 7~ +p — K° + K% 4+ n, on obtient

2
T — (mg +mi +mp)” — (Mg +my)? _ (500 + 500 + 940)2 — (140 + 940)? 1,38 GeV
2m, 2 x 940

Il existe une large plage d’énergies des pions incidents qui ne donnent que les particules désirées.

a. On a
pr = E7 —mZ = (Ex — ma)(Er +mz) = Tr(Tr + 2mx)

4- Dans le systéme des kaons neutres, on a C’|KO> = |KY), Les états propres de C P sont définis par
CPIKY) = +|K?) et CP|K3) = —|K3).
Soit
1 1

V2 V2
Si on produit des faisceau de K, les K; vont se désintégrer plus vite. On doit donc observer des
désintégrations en 27 prés de la source et des désintégrations en 37 loin de la source (Gell-Mann
& Pais, 1955). Le Ky a été observé a BNL en 1956 (Lederman et al.). 71 = 0.895 x 10~ s (qq
mm) et 72 = 5.1178s (qq m!)

K1) = —=(IK°) = |K)) et |[Ka) = —=(|K°) + |K"))

Le meélange entre K° et K© est possible car Iintéraction faible ne conserve ni Iisospin ni 1’é-
trangeté. Dessiner des diagrammes de Feynman représentant la transformation d'un Ky en KY.

ENS - Lyon 34 M1 - Symétries et Particules



wl
S

5 d
\\_?}_/ W

KO w, W K K¢ w i S KO

TN W

5- Quel est le principe de fonctionnement d’un “régénérateur de Kg” ?

Le faisceau de K° peut s’interpréter comme un faisceau composé a part égale de |K7) et de |KY).
Aprés une propagation sur une distance importante, les |KY) dont la durée de vie est beaucoup plus
courte ont disparu. Dés qu’on introduit un écran sur le trajet de ce faisceau, il faut repasser dans la
base K9 K qui est la bonne base vis & vis de I'interaction forte. L’état entrant dans le régénérateur
est

1

V2

A la sortie du régénérateur, on obtient un état | X ) tel que

X7 = |K3) = —=(IK%) + |K?)

out\ __ ; 0 Flc0Vy — 1 f+-f 0 f;f 0
) = R+ AR = e (S + 5 kD)

ol f et f sont les transmissions des K° et des K a travers le régénérateur.

On peut obtenir & la sortie une quantité importante de |K?) si f et f sont trés différentes.
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M1 - ENS Lyon
Symétries et Particules
Année 2013 - 2014- Semestre 2b
Article 2 : La découverte du J /v

11 Introduction

L’article proposé est I'un des deux articles publiés en méme temps, annoncant la découverte d’une
résonance mince pouvant s’interpréter comme une résonance cc.

Cette découverte a valu le prix Nobel aux deux représentants des groupes expérimentaux : Burton
Richter[2] et Samuel C. C. Ting[I] en 1976. Cette découverte s’est faite simultanément au SPEAR,
collisionneur eTe~ du SLAC en Californie et & ’AGS, synchrotron & protons du laboratoire national
de Brookhaven (BNL) dans ’état de New York dans une expérience de type cible fixe on un faisceau
de protons était envoyé sur une cible de Beryllium.

Nous étudierons en particulier 'article du groupe de S.C.C. Ting [I] dont la description expéri-
mentale est un peu plus fournie. Aucun des deux groupes ne recherchait un quatriéme quark.

Les résonances, aujourd’hui appelées mésons vecteurs p,w, ¢, avaient été découvertes & des masses
de I'ordre de 1 GeV et des largeurs I')=100 MeV, I',=10 MeV, I'y=5 MeV. Toutes avaient J(spin)=1,
C(Conjugaison de charge)=-1 et P (parité)=-1, comme le photon, elles étaient considérées comme
des photons massifs! Le groupe de S.C.C. Ting recherchait ces “photons” et voulait isoler leur dés-
intégration en ete™ (quel est leur rapport de branchement dans ce mode ?) pour étudier comment la
photoproduction de ces résonances suivie de la désintégration en eTe™ interférait avec la production
directe de paires v — ete™, afin de mesurer ’amplitude de production de ces résonances. Ils étudi-
aient ces résonances dans un faisceau de 1017 /s a DESY a ’aide d’un spectrométre permettant une
résolution en masse de 5 MeV /c? permettant aussi de distinguer les paires ete™ des paires de 77~
avec un pouvoir discriminant > 10%.[3] (D ot vient cette nécessité ?)

ete~ pions
=5
Taux de branchement : 5 321875 00'?9889 D’ou la nécessité de discriminer entre
¢ | I'=127keV | I' =4.26 MeV

mtn” et ete.

La question du nombre de "photons massifs" de ce type, motiva la construction d’une nou-
velle expérience auprés de l'accélérateur AGS de protons de 28.5 GeV de BNL afin de traquer de
nouvelles résonances de ce type jusqu’a des masses de 5 GeV, produite lors d’interactions fortes
p+p— VOt X = efe” + X (ont VO est utilisé pour représenter une particule neutre qui se désintégre
avec une topologie observée dans le détecteur qui ressemble a la lettre V).

C’est ce dispositif qui va permettre la découverte du J.
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12 Un peu d’histoire

12.1 Angle de Cabibbo

En 1963, Cabibbo avait introduit le doublet u, d’ pour tenir compte de la désintégration des
particules étranges [4]. En suggérant que les quarks états propres de propagation (masse) étaient
différents des états propres de l'interaction faible, cela permettait d’expliquer les désintégrations du
type K — ptv,, sans remettre en cause le schéma organisant les fermions gauches en doublets de

I'interaction faible ( ;jf > , ( Z‘i > , ( Z > , dont les seules transitions possibles étaient entre les

membres d’un méme doublet.

Cabibbo fait I’hypothése que le courant faible couple au doublet < Z;, ) tel que
d =d cosf.+ s sinf,
s’ = —d sinf.+ s cos0,

(KT — ptyy,)
(rt — M+Vu

[

FIGURE 2 — Désintégration K+ = pty,

~ tan? 6, correspond & un angle 6, de 13.15°.

Le rapport des largeurs partielles

12.2 Meécanisme de Glashow - Iliopoulos - Maiani

Les prédictions de taux de désintégration du K% — ptp~ si on noe considére que les transitions
DIKL =i i7) (9141910,

T ()
L’introduction d’un quark ¢, complétant un doublet faible avec le 8, rendait un nouveau diagramme
possible, dont I’amplitude aurait annulé totalement le diagramme déja imaginé, si ce n’avait été pour
la différence de masse des quarks u et c. En 1970, Glashow - Iliopoulos - Maiani prédisent 1’existence
d’un quatriéeme quark [5].

u <+ d’ sont beaucoup plus élevées que I'observation expérimentale

S K S K
W W
K9 uf Yy K9S b Yy
_ _§V _____ \_N_ -
d T d ut
M ~ cosf,.sin 6, M ~ —cosf,.sinf,.

FIGURE 3 — Deux contributions a la désintégration K© — ptpu~

Ce mécanisme n’a pas été pris au sérieux avant la découverte en 1974 de la résonance cc, car il
nécessitait I'invention d’une nouvelle particule, pour régler un probléme particulier d’'une théorie qui
demandait encore largement & étre validée par l’expérience.

Entretemps, Kobayashi et Maskawa avaient déja théoriquement introduit une 3¢"¢ famille de quarks,
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seule fagon d’introduire une phase complexe dans la matrice de rotation de Cabibbo, phase qui per-
mettait d’introduire naturellement la violation de CP dans les interactions faibles.

13 Dispositif expérimental

La zone expérimentale avec les arrivées de faisceau est schématisée sur la figure [dl Le détecteur de
I’expérience est entouré et agrandi sur la figure
Les deux plans de détection jouent un role différent. Les aimants (notés M pour "magnet") défléchissent
les particules chargées dans le plan vertical. Pour pouvoir les suivre et mesurer leur quantité de mouve-
ment, le dispositif est incliné verticalement de 10.33°. Le détecteur est composé de deux bras identiques
disposés chacun & 14.6° horizontalement de chaque coté de la ligne de faisceau. Il intercepte donc seule-
ment les paires de particules émises de la cible dans ces directions.

HC:H [
£xe | gre FAF 57N £20. brg T

FIGURE 4 — Le hall expérimental est auprés de ’AGS. L’expérience 598, entourée, est au bout de la
station A
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FIGURE 5 — Schéma. du dispositif expérimental. Les parties marquées M sont des aimants dipolaires,
les Ag, A, B, et C sont des chambres a fil proportionnelles (8000 fils en tout), les parties marquées a,
b sont des hodoscopes 8x8, S désigne 3 stations de calorimétres au verre au plomb. Cpg, Cy, et C, sont
des compteurs Cerenkov

13.1 Le spectrométre

Composé des aimants et des chambres & fil, il permet de mesurer la quantité de mouvement
des particules qui traversent le détecteur. Le sens de la courbure détermine la charge. FEn ef-
fet, la trajectoire est mesurée par les plans de chambre a fil notées Ay, A, B, et C dans la
figure Bl Les 11 plans de fils de 20 um de diamétre espacés de 2 cm ainsi que leurs orien-
tations sont schématisés dans la figure [ Une particule chargée ionise le gaz de la chambre a
fils qu’elle traverse. Les fils sont mis sous haute tension positive et les électrons libérés se dé-
placent dans le champ ainsi créé vers le fil le plus proche (lignes de champ voir figure [6]).
Ils ionisent eux-aussi le gaz, et une avalanche se forme

0.20
S e G e s e : : 4 : 4
015 [ ( Maliwe proorions hamber A qui va donner un signal électrique collecté sur les fils
010 | FRT PR T o B d’anode. Les ions, eux se déplacent - plus lentement vers
: e : H ‘ P
e pimater: : : les plans de cathode. La charge totale collectée est pro-
E M ~ 3 . z ’ . . .
= 000 [ 14 : portionnelle & I’énergie déposée par ionisation tant que
¥ / : le tension reste en-dessous d’un certain seuil. Au-dessus,
~010 8 iR de ce seuil, le passage d’une particule ionisante provoque
FE CEXE R T e SEEERRE RS pas: HIHH NP o
-ous [P R des claquages (chambres & étincelles, compteurs geiger).
T A T T T e e G e

Le nombre de plans touchés permet d’éliminer le bruit
de fond de conversions de photons de basse énergie qui ne
laissent du signal que dans quelques plans. Le rayon de
courbure de la trajectoire dans le plan perpendiculaire au
champ magnétique des aimants est relié a la quantité de mouvement par p; (GeV/c)=0.3-Q(e)-B(T)-
R(m). La mesure de la masse invariante de la paire e™e™ nécessite la connaissance de la quantité de
mouvement de chacun des électrons. La résolution spatiale d’une chambre & fil est de 'espacement divisé

FiGURE 6 — Champ électrique dans une
chambre & fils
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par v/12, ici ~6 mm. Pour rappel la variance d’une distribution uniforme entre -d/2 et d/2, normalisée
2
/2 /2
a 1 (f(x)=1/d sur l'intervalle et 0 ailleurs) vaut o2 = / 22 f(x)-dr— (/ x- f(x)- dm) , donc
—d/2 —d/2
o=d/v12

13.2 L’hodoscope
-60° +60°

Un hodoscope (a,b) sur la figure Bl est habituellement
composé de scintillateurs organiques. Les scintillateurs, —a0__+20°
matériaux qui réagissent au passage d’une particule ion-
isante par I’émission de lumiére, sont trés utile pour dé- -20° +40°
clencher 'acquisition de donnée car leur signal lumineux
est émis en ~0.1 ns, ce qui permet une prise de décision
rapide, basée sur la coincidence du signal observé et de -5° +5°
I’arrivée d’'un paquet de protons sur la cible. %

yd

FIGURE 7 — Orientation relative des fils des
différentes stations de chambres & fils

-80®

13.3 Compteurs Cerenkov

Une particule chargée émet de la radiation Cerenkov,
lorsque celle-ci va plus vite que la vitesse de phase de
la lumiére dans le milieu qu’elle traverse. L’angle 6. d’émission de la radiation par rapport a la
direction de la particule, pour une particule de vitesse Sc¢ dans un milieu d’index de réfraction n est
cosf. = 1/(nf). Le seuil d’émission est donc Sseyis = 1/n et Ysenis = n/vn? — 1. Comme vy = %, les
seuils d’émission sont différents pour des particules de masses différentes. En particulier, les compteurs
Cerenkov peuvent étre réglés de facon & ne pas étre sensibles aux pions mais bien aux électrons.
L’indice de réfraction de Cp est choisi de fagon & étre sensible aux électrons au-dessus de 10 MeV
et insensible aux pions en dessous de 2.7 GeV. Les compteurs sont remplis d’Hy et leurs fenétres
d’entrée et de sortie sont de 125 et 250 um. Le nombre de photons produit par intervalle de longueur
et d’énergie E du photon pour une particule de charge Qe vaut :

d’N aQ?

o .. 92 ~ s 2 -1 -1
dE = ho SiB 0.~ 370sin” 0.(E)eV ™ "em™ .

La lumiére produite est réfléchie sur un miroir sphérique et renvoyée vers un photo-
multiplicateur. La tension de celui-ci doit étre ajustée pour étre efficace pour un élec-
tron, mais pas bruyant, car dans la zone de faisceau le niveau de radiation est trés
élevée et il faut éviter les coincidences fortuites. Les photomultiplicateurs sont réglés
de telle sorte que le passage d'un électron produise un signal de 8 photoélectrons.
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13.4 Calorimétres

Placés derriére les autres détecteurs, les calorimeétres
mesurent 1’énergie des particules en les faisant intéragir
dans un matériau dense et si possible scintillant et
transparent. Le nombre de particules produites lors
de linteraction (électromagnétique pour les e™ et 7 et
hadronique pour les hadrons) est proportionnel & I’énergie
de la particule. Ces particules vont elles-méme interagir
dans le milieu. Les particules chargées produisent de
la lumiére (scintillation et/ou Cerenkov) et celle-ci est
collectée. Aprés calibration avec des faisceaux d’énergie
connue, l'intensité lumineuse collectée permet de mesurer
I’énergie de la particule incidente. Afin de capturer
toute la gerbe de particule il faut prévoir plusieurs (
habituellement entre 5 et 8 ) longueurs d’interactions
nucléaires. La figure 0 montre pour quels éléments cette FIGURE 8 — Photo du compteur Cerenkov
longueur est la plus faible et donc la plus intéressante du C,, avec les chambres multi-fils (A,B,C) a
point de vue du cott en détecteur. Les matériaux choisis 1’arriére et des plans d’hodoscope (Z). Tout
ici sont du plexiglas au plomb et du verre au plomb & ’arriére on devine le calorimétre au verre
(PbO, qui est transparent mais d’un Z plus élevé que le  plombé (U)

Si et plus dense que la silice). Il y a 10 longueurs d’interaction de telle sorte que toute I’énergie des
particules sera contenue. Chaque détecteur est segmenté en environ 100 cellules afin de mesurer la
direction de la trajectoire des électrons.

ing part of the Cerenkov counter Ce, the
iers Xocables Y, and hodoscopes Z. The Tead-gla

Pour calibrer la réponse du calorimétre aux électrons ® - : ‘ ®
il faut pouvoir injecter un faisceau d’électron dans la ligne ol e o0 A
de faisceau. La calibration est faite au moyen de la dés-
intégration en vol de 7° — yete™ (7 = 107s). Dans
le bras ou la polarité des aimants est prévue pour sélec-
tionner les charges négatives, le e est défléchi vers 1'ex-
térieur. La coincidence entre le Cerenkov ol il est mesuré
et les hodoscopes et les autres Cerenkov permet de s’as-

=]
T

Afp (em)
5]
Xo/p (em)

8
T

5
T

0
20

7z
Figure 28.21: Nuclear interaction length A;/p (circles) and radiation length X/p

surer qu’on a un faisceau pur d’électron pour calibrer (au (+75) in cm for the chemical clements with Z > 20 and Ay < 50 cm.

moyen de la quantité de mouvement reconstruite grace au

spectromeétre) FIGURE 9 — Longeur d’interaction nucléaire
divisée par la masse volumique (A;/p) et de

13.5 Blindage radiation (électromagnétique) Xo/p (pour

les éléments au-dessus de Z=20)
Toutes les secondes 102 protons arrivent sur une cible

dont la longueur est de 10% de la longueur de collision. Il y a donc autant de particules qui arrivent
dans la zone expérimentale. Pour protégéer les détecteurs et les physiciens, ils ont da récupérer plus
de blocs de bétons que n’étaient disponibles & BNL! II leur a fallu 10 000 tonnes de béton, 100 tonnes
de plomb, 5 tonnes d’uranium et 5 tonnes de savon(!) (au-dessus de Cp, entre M1 et M2 et autour de
Ientrée de C, pour stopper les neutrons lents). Méme comme ¢a le niveau de radiation dans la zone une
heure aprés 'arrét de faisceau était de 50 mSv/h (2.5 fois la dose annuelle admise pour un travailleur
du nucléaire en France!)
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14 Questions

1- Pourquoi choisir des collisions proton-noyau plutot qu’un faisceau e e~ 7 Quels sont les problémes
inhérents aux deux options?

Avec une collision proton-noyau, on peut couvrir plusieurs énergie de centre de masse des intéractions
élémentaires. De plus, les particules recherchée sont produites via l'intéraction forte, c’est donc plus
efficace. Le probléme est de tenir le flux de particules produites lors de ces collisions.

2- La cible choisie pour le faisceau de proton est du beryllium. Pourquoi ce choix plutot que du
plomb ou du tungsténe ?

On emploie des cibles en beryllium car elles chauffent moins et donc risquent moins de fondre. Leur
A faible fait qu’il y a moins de nucleons de basse énergie par interaction, sa capacité calorifique entre
20°C et la moitié de la température de fusion est 5 fois plus élevée que celle du tungsténe par exemple,
et il est facile & refroidir.

3- Pourquoi choisir 14.6° comme angle par rapport a la ligne de faisceau? (Quelle est 1’énergie
cinétique dans le référentiel du centre de masse a laquelle le taux de production du V? inconnu
sera le plus élevé ? Pour un VO produit par un faisceau de protons de 28.3 GeV dans le référentiel
du laboratoire. Avec cette énergie cinétique dans le centre de masse, & quel angle sont émis la
paire d’électrons recherchée et produite par désintégration ?)

La production est maximale & la résonnance qui correspond & la particule produite au repos dans son
référentiel propre. Si on se limite aux désintégrations eTe™ partant & 90° ( moins de contamination
due aux restes de la collision plus sur I'avant ), ces électrons émergeront & un angle de 14.6° dans le
laboratoire ( ou les protons ont une énergie de 28.3 GeV).

4- Vu sa position, a quoi peut bien servir le compteur Cp 7

Le compteur Cerenkov Cp sert a détecter les électrons provenant de la désintégration 70 — yete™.
Un électron est détecté dans Cpg, 'autre part dans le spectrométre avec des caractéristiques de ce fait
connue. Cela permet d’étalonner le spectrométre avec des électrons connus.

5-  Quelles sont les hypothéses faites sur ce que peut étre la résonance ?

Les particules charmés ou les a ( un truc qui a & voir avec I'unification électrofaible d’apres le papier
référencé dans l'article ) ou le boson Z°.
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15 Interactions neutrino-quark

1- Les faisceaux de neutrinos produits en laboratoire sont en général des faisceaux de neutrinos
muoniques. Expliquer les raisons de ce choix.

Les particules pouvant étre accélérées sont les particules chargées. Un faisceau de neutrinos est obtenu a
partir d'un faisceau de particules chargées se désintégrant en neutrinos. Pour avoir le temps d’accélérer
une particule, il faut qu’elle ne se désintégre pas trop rapidement. Parmi les particules chargées, seuls
les pions et muons sont utilisables. Pour avoir des faisceau de neutrinos d’énergie connues, il faut que
la désintégration de la particule chargée se fasse en 2 corps. Il ne reste donc que le pion qui convient
et qui se désintégre en muon+neutrino.

2- On considére un flux de neutrino muonique traversant une cible matérielle. L’interaction par
courant chargé (CC) du neutrino est gouverné par le diagramme suivant :

d(p) u(p')

vu(k) p (k)

Ecrire I’élément de matrice correspondant.

M = dy, (=i 2y (1 —~%) ) u _i(gaﬁ_qaqﬁ/m%’g)ﬂ — i AB (1 — %)) ugVyq ot Vg est une com-
= Uy 2\/5’7 Y vy P—m2,c? U 2\/57 Y dVud ud

posante de la matrice CKM.

3- Donner le diagramme de Feynmann pour l'interaction CC entre antineutrino muonique et quark.

4- FEn supposant que ¢°> << m%,VCQ, en négligeant les masses et en ne tenant pas compte de la
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matrice CKM, le carré de I’élement de matrice sommé sur les spins pour I'interaction v, d s’écrit :
IMyal? = 64G%(k.p)(K'.p') ott GF est la constante de Fermi. En déduire le méme carré pour
I'interaction 7, u.

Le diagramme est identique mais la ligne muonique est orientée en sens inverse. Du coup, dans I’élément
de matrice, la position du neutrino est interverti avec celle du muon. Avec les notations des diagrammes
ci-dessus, cela revient & échanger k et k'. Et donc My, |2 = 64G% (K .p) (k.p')

5- La section efficace différentielle de la réaction s’écrit : gg = |M]2 ot s est le carré de énergie

647r s
de la collision dans le centre de masse de la collision. Calculer m(”ud) et g_gz(’/u ). On notera 6
I’angle fait, dans le référentiel du centre de masse, entre la direction du neutrino incident et la

direction du quark sortant. On négligera les masses.

2
= (k+p)? = 2kp = (K +p)? = 2k.p donc L (v,d) = %. On a aussi k +p = k' + p/,
donc k — p' = k' — p et donc k.p/ = K'.p (on néglige les masses). Dans le centre de masse k.p/ =

E;E; — EzEgcos(0) = éé(l —cos(f)) = 5(1 — cos(f)). Donc & (7,u) = % (1 — cos(6))?

o(vd)
o(vu)”

6- FEn déduire le rapport

On integre sur l’angle solide et donc o(vd) = % et o(vu) = (1 — cos(0))?sin(0)dd et par

changement de variable u = cos(), l'intégrale se réécrit : f ) d f (1+u?)du=2+2=2%
d’on o(vu) = (?:rs et ZEZZ)) =3

7- Que faudrait-il prendre en compte pour passer de Zggﬁ)) 3 2N

—— ou N est un nucléon ?
o(vN

~—

Les distributions de partons u(zx,y),d(x,y), ....

8- Si ’on refait le méme exercice avec les courants neutres, quel paramétre physique supplémentaire
va intervenir 7

L’angle de Weinberg 6y par le fait que le couplage Zqq fait intervenit sin? 6y et que My, = M cos Oy

[’image [Qlmontre les rapports de section efficace neutrino- matlere < mesurées pour les neutrinos
et les antineutrinos. Ces rapports sont prédits par la théorie electrofa1ble Ils dépendent de I'angle de
Weinberg. Au milieu des années 70, ces rapports avait été mesurés avec Gargamelle au CERN et HPWF
au FNAL. Le résultat de FNAL était incompatible avec la théorie électrofaible. Celui du CERN I’était
mais la valeur de I’angle Weinberg (sin? 6y, = 0.23) n’était pas la bonne.
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F1GURE 10 — Valeurs des rapports NC/CC mesurés par les expériences Gargamelle et HPWF comparées
aux prédictions du Modele Standard.
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16 QED et la réalité du nombre quantique de couleur

L’intérét de la production en mode ete™ est particulier dans le sens ou la mesure du rapport

o(eTe™ — hadrons)

= (voir figure [[2) permet tester I’hypothése de la couleur, dans un processus

olete” — ptp™)
de QED ordinaire.

et f

o
F1GURE 11 — Production d’une
paire fermion anti-fermion (seul

graphe sauf pour f=e)

L’amplitude du graphe de la figure [[T] fait intervenir des termes en
M o [De (e )ue] _292“” [uf(igrey”)vs], de telle sorte que la section
efficace pour chaque paire de fermion-antifermion est o7 o |IM|?,
de telle sorte que, si on néglige les effets d’espace de phase, le rap-
port :

o(ete™ — hadrons
R = ( ) ~ Zq]%
f

olete™ = utu™)
En-dessous du seuil de production du charme, on s’attend & R =
2 - (%1)2 + (%)2 = % si le seul nombre quantique différent au
numérateur et au dénominateur est la saveur des quarks. Si il y
a en plus le degré de liberté de couleur, on s’attend & ce que
R = 2. Au-dessus du seuil du c et avant celui du b on s’attend

A R=2 [ (%1)2 + (%)2} = % sans couleur ou % = 3.33 avec la

couleur. C’est bien ce qu’on observe sur la figure [[2, a peu de choses prés... (Quelles approximations

a-t-on faites ?)

formation d’un état lié.

Les masses des quarks sont différentes, mais surtout les quarks ne sont pas des fermions libres qui obéis-
sent a I’équation de Dirac. Ce sont des particules virtuelles qui vont interagir & nouveau : hadronisation,

1- Nous allons maintenant calculer la section efficace du processus décrit par la figure [[Il Donner
I’amplitude M de ce diagramme en supposant que les fermions en sortie ne sont pas des électrons.

(2m)® / [De (ie7" )ue] _Zg;y [y (igrey” )vs) 6% (py + pf — )04 (@ = Pe- — Pet) g
= i(2m)* [De(ev*)ue] [ts(qren” )vy] (

= M=~ [oe(er®Yuel [y (arer”)or] ¢

d*q
(2m)*
v 54 _
350 (Pf T PF— De— — Det
Pe- +pe+)2 ( ! / ‘ ¢ )
Guv
Pe- +pe+)2

2- En utilisant les formules de Casimir, montrer que :
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Figure 41.6: World data on the total cross section of eTe™ — hadrons and the ratio R(s) = o(eTe™ — hadrons,s)/o(ete™ — utu=,s).
o(ete™ — hadrons,s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, o(eTe™ —
wtu=,s) = 4ﬁa?(s) /3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ébid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/, 1(25), and T(nS),n = 1,2,3.4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.1bl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.) See full-color
version on color pages at end of book.

FIGURE 12 —

2 8(]}%64 2 2 2 2
(M) = 4 pa ) ((Pe D) @et - PF) + (e - PP (Dt - Df) +MmE(Ds - PF) + MF(Pe— - Pet) + 2mem7)

On rappelle que
Tr[y" p17" #o] = Alpips + piph — (p1 - p2)g™”]
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1
(MP) =7 > ImMP
Set1Se— 78f78f_
14 T
T (et por)’ Z [Ve" ue—] [t pyuvs] [Ver ue-]" [apyvy]

St rSamsSfiSF
264
i Tr (Wu(ﬁe* + M- )Wy(yjeJr - me*)) Tr (Vu(ﬂf - mf)’)/,,(]sz + mf))

(pe_ + De+ )4

Ry

et

Tr (Vﬂ(ﬁe* + M- )r)/y(ﬁ@L - me+)) =Tr (7“ ]Zje*ryy ﬁe*) - szI‘ (7“71/)

=4[t pls + D — (pe- - per )9 — AmZg"
Et donc :
2 4q;€4 2 v 2
(IMPP) = ————=3 Plple + 0008 — (e et +m2)g"™ | [PrupF s + DrulF, — P - PF+ M%) 9]
(pe* +pe+)
4qfe 9
- ( +p+)4 (2( pf)(pe+ pf)+2( 'pf)(pe+'pf)_2(pf'pf) ((pe_ 'pe+)+me)
e
= 2(pe- - pet) ((pr - 2f) +m7) +4(ps - P7)(Pe- - Det) + 4mZ(py - P) + 4G (De- - pet) + 4mim?)

8qf

T ((e= - 2F) Dt - PF) + (Pe- - P (Per - f) +mE(Df - Pf) + MF(Pe- - Pet) + 2mim7)

3- Donner les quadri-vecteurs énergie-impulsion de chacune des particules d’entrée et de sortie dans
le référentiel du centre de masse de la collision. On notera E I’énergie de I’électron incident, E
I’énergie du fermion sortant et 6 I’angle entre la direction du fermion sortant et la direction de
I’électron incident.

= (F,pe,0,0)
pet = (B, —pe,0,0)
pr = (Ef,prcosb,prsing,0)
b= (E¢,—pyfcost,—pssin,0)

4- exprimer <|M|2> en fonction des énergies et impulsions dans le centre de masse.
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8¢2e et
(IMP) = f55r4 = 55
16E 2F
avec
A= (EE; — pepy cos0)” + (EEy + pepy cos 0)° +m2(Ef + p}) + m7(E® + p?) + 2mZm3
= 2E2E12£ + 2p§pfc cos® 0 + m2(2E]2c - m?) + m?:(QEz —m?) + szmfc
= 2E2E12£ + 2p pf cos? 0 + 2m2Ef + meE2

soit :
q;
<|M|2> = 2;4 (EQEf +pepf cos® 0 + m2Ef + mez)
On peut réécrire cette expression sous la forme :
Ej m2  m?
<|M|2> = C]f€4E]; <1 + B ﬁ2 cos® 6 + E—; + E_]2J:>
E? 1 1
4_J 202 2
= qje 1+ B°B%cos” 0+ —= + —
e < ! 7?7
E2

= gje' g5 (1+ 80 cos’ 0 + (1= %) + (1= 5})
E2
= ¢je* B2 L (3+ 287 cos?0 — 2 — B3) W

avec 3 et By les rapports ¢ pour I'électron incident et le fermion sortant.

5- La section efficace du processus s’écrit :

2
do = <|M| > dG(I)Q

4\/(pe* : pe+)2 - mé

ot d®, est I'espace de phase & 2 particules :

d3ﬁf d3ﬁf
3 3
(2m)° 2E¢ (2m) 2Ef

dDy(q = pe- + peripfpf) = (27)* 6* (pe- + per — ps — D7)

Calculer o(efe™ — ff)

ENS - Lyon 50 M1 - Symétries et Particules



(Pe- - per)? —mi = (B> +p2)° —m? = (2E% —m?)” —m? = AB* — AE>m? = 4E?p?
d’ou :
(M)
8Ep,
<|M|2> 4 3= 13-
_ 5 (D= + Dot — D5 —p7) dPrd°pr
32(2r) B, (Pe- + per — Py — pf) d’Prd’pf
_(MP)
128w2EE]%pe
(M)

=" L §(2F — 2E;) p2dpdQ
12872 EE%p, ( 7)Pydpy

__AMP)
25672 EE]%pe

do = d5®,

§ (B~ + E.+ — Ey — Ef) pidpsd€

§(E - Ey) pfcdpfdQ

Ona Ef = ,/pfc +mfc donc E]% :p? —i—m? et EydE; = prdpy, d’ot :
(IMP%)
256712EEJ%pe

M 2
= 7<| | > £dS2

25672 E2p,

(IM[%) 5~ miao
25622\ /E? — m2

qfe E? —
 256m2ES \| E? —

2
]; (E* + p2p} cos® 0 + mZE* + m7E?) dQ2

On a [dQ =4r et [ cos?0dQ = 2m f% cos? Od(cos 0) = 27 f_ll u?du = 4 et donc :

2.4 2 _ 2
_ e B —mj o PEPT 2
7= 6t | EE 2 (E 3 el mE

qj2”e4 E? — ?el 1 ) e o ) . -
= 64rES \| B2 — 25(3E + (E* —mZ)(E* —m7}) + 3mg E* + 3m$E?)
%2064 E2 — 30 4 4 2 9 9 9 9 o - 5o
B SE" + E” — EPme — EPmy + memy + 3me BT + 3mpE
192 E0 \| B7 2 | ¢ g+ memy + 3me )
q]2c64 B2 —

m2
= T\ e 12" (4B + 2m2E + 2m3 E? + m?m?)
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L’équation (Al) donne

2 4

do a5 ps 202 2 2 2
— 1 i3 9 — B2 —
a0 2567T2E2pe( + B7Ff cos” 0 = 5% = Bj)
@ a2p
= "L (34 5°6F cos® 6 — 5% — 55) (B)
S De
aves s = 2F et a = %. Cette équation peut aussi s’écrire sous une forme isolant les termes qui

disparaissent quand les masses sont négligées :

dU_qu”azpf 2 2\ ;2 2\ i 2 2 2 2
0° 1 p—e(1+cos 0+ (1 —p3%)sin®0 + (1 — Bf)sin®0 + (1 — g%)(1 — 53) cos® 0) (C)

L’équation (Bl donne

2 2
qrmaT p
o= f3—p—f (9+ 8263 — 382 — 363) (D)

‘o s oF
6- En déduire R, = M
olete Il

o | EB*—m2 AE* + 2E*(m2 + m2) +m2m?
R,=q¢q
A\ B2 — m2 4B + 2E2(m2 +m?) + mZm?,

9 Dg 2F? —{—mg

7- Montrer que si on néglige la masse de I’électron, R, = ¢+— ———
q ghg q pru 2E2 + m}%

oll py (resp. p,) est

Pimpulsion du quark (resp. du muon) d’énergie E.

R — & | E? —m2 AE* + 2E*m
VN B2 - m2 4B + 2E2m2
Pu 2E% +my,

8- Que vaut R, si on néglige toutes les masses ?

Rq:q?
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do(ete™ — ff)
dQ

9- Montrer que si on néglige la masse de I’électron, la section efficace différentielle

et la section efficace o(eTe™ — ff) sont égales &
+ - & 2 .2
do(ete” = ff) o 8
dQ  4s
27Ta

(2 — B} sin”0)

Br (3-57)

ot By est le rapport ¢ pour le fermion sortant, o = % et s est I’énergie dans le centre de masse.

Négliger la masse de I’électron revient a faire 5 = 1 dans les équations (B]) et (D). D’aprés I’équation
@) :

2.2

do(ete” = ff) 497 py 2 2 2
10 =0 E(?;—i—ﬂfcos 6—1—ﬁf)
2 2
_ 4> py 2. 2
= 43 E(2+ﬁf(cos 6—1))
q
= f ﬁf (Q—ﬁfsm 9) (E)

D’apres 'équation (C)), on a aussi 'expression :

do(ete™ — ff) C]f
dQ 4s Bi

(1+ cos? 0 + (1 ﬁ]%) sin? 9)

Enfin, I"équation (D) donne :

Qfa
0= pe(9+ﬁf 3—357)

2
_qfﬂa Pf o 5n2
=5 £ -2

2oma’
=5 (3 ) (F)

10- Donner 'expression de ces sections efficaces si on néglige aussi la masse du fermion f.

En négligeant toutes les masses, 8 ~ 1 et d’apres les équations ([El) et (E),

do(ete™ — ff) B queaz

02
19 = 45 (2—51n 9)
q
= ’;S (1 4 cos? 9)
2 2
qf27ra
= 3—1
o 5 8-1)
_ quAwaz
- 3s
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17 Le quadri-vecteur polarisation

On considére un référentiel dans lequel le W a un quadrivecteur énergie-impulsion

512 o
o = (Ek - \/‘k:‘ + M2,0,0, |k|>

La polarisation peut se décrire par 3 quadrivecteurs de polarisation : deux décrivent les polarisations

transverses : 6&1) et 6&2) et le dernier 6&3) décrit la polarisation longitudinale. Ces vecteurs s’écrivent

dans le référentiel mentionné ci-dessus :

gll« (]E{) = (0’150’0)
e (k) = (0,0,1,0)
) = (4.0.0%)

Pour obtenir I’expression des quadrivecteurs dans d’autres référentiels, il faut faire une transforma-
tion de Lorentz.
Ces quadrivecteurs vérifient les relations :

&.Etn)gu(m) — _gnm

3
n) _(n kK,
>l = g+ 2
n=1
sg‘)k“ =0

Ces formules sont valables pour tout vecteur massif (W, Z)

18 Taux de désintégration du W

Le taux de désintegration d’'un boson Z ou W vers une paire de fermion anti-fermion de masse

négligeable est )
'=———— [dQ M
64 72 My, / MI

1- A partir du couplage entre le W, le e et le v : —iﬁﬁfy“ (1 — 75) et en négligeant les masses des
fermions, démontrer que
a"q”

2

g Ay v

MPP =3 <_gMV+M—2> [RkS + kiky — (kv - k2)g™],
w

(k1 et ko sont les impulsions du e et  sortant). Pour ¢a
— vous utiliserez des identités de traces avec matrices v comme :

Trly" p1y" #o] = Alpips +piph — (p1-p2)g™]
Tr[y*7"vPy°~°] = 4ie™P”
(1)
— vous utiliserez que la somme sur les polarisations du W est ) 69)* e,(f‘) = —gu + %\‘23”
w

(¢ = k1 + ko étant 'impulsion du W).
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Pour un W de polarisation (\), on obtient pour un élément de matrice :

iM = —z'%ew(q) [t (k)7 (1 = 7 Yup, (k)]
M2 =L @22 [z =7 )r (k)] [fie(k )" (1 = 77)vi (k)]

Sve

En utilisant les formules de Casmnr on obtient :

2
(MP? = e (@) (@) Tr [0 = 77) (Ko = s )7 (1= 4) (o +me)]

Et en négligeant les masses des fermions :

M2 = e (@) eV (@) Tr [7(1 = 7°) Kor" (1 —7°) Ki]

|
»PI%OOI%OOI%
tm/;

(@)eV (@) Tr [7#2(1 —~°) Jay” Ji]

@)
—
>
g

(@) eV (@) Tr [(1+ 229" Far” J]

I
= 2N () eV (q) (kLK + KYKY — (ky - k)g™ + i€ kyphio)

Pour un W non polarisé, il faut faire la moyenne sur les 3 états possibles de polarisation :
Mo = 292 M) eV (q) [T + kY KE — (ky - ko) g + i€ 7 kypki o)
’ 44
) <—9w o V) [k + Ky Ky — (k- ko) g + i€ kaphio]
~9 (- e N (el iy 4+ kY RE — (y - o) g™
G + [ 2 T+ ( 1 2)9 ]

ou on a utilisé le fait que la contraction d’un tenseur symétrique avec un tenseur antisymétrique est
nulle.

g2

2- Montrer que |[M|2, = gMI%V
2 2q - k1)(q- ka) — (k1 - ka)g?
ME, = L (Z20ks - ko) + 4k - k) + 291 2)2 (ks - ko)
3 M2,
2 2(q - k ko) — (k1 - k2)g?
_9 2(ky - ko) + (- Fk1)(g 2)2 (k1 - k2)gq
3 M2,

Dans le CM. du W, on a ¢ = (My,0,0,0), k1 = @(1,0,0,1) et ko = A/[Q—W(l,O,O,—l) et donc
2
ki -ko=q - ki=q ko= MTW et ¢ = MSV et le terme en 1/M5V s’annule.

2 9° 12
= [Mli = §MW

3- Démontrer que
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(négliger les masses des fermions)

g M _ _1 4m’Mw _ ¢*Mw
I'= 647r2M fdQ T 6472 3 T 487w

4- Plus généralement le vertex correspondant & la désintégration d’un boson vecteur
X en deux fermions de spin %, fi et fo est —zgxzfy“(cv — cav’?). Montrer que

X — f1f2) 487T(CV + CA)M

Dans la trace précédente, on remplace le calcul de (1 —~%)% = 2(1 — ~%) par (cy — cay®)? = (& +

%) — 2cycary® Le terme avec 4° donnera une trace en €Y% qui s’annulera, avec la contraction avec le

Gty v tch
%

tenseur symétrique —g,,, + ——-. On aura donc un facteur de correction de . Dans I'expression

2
X . . ) . 2 )

du vertex, on a 97 au lieu de 9 ce qui au carré occasione un facteur L2X, donc le résultat est
g

2v/2

: gx(cp + ) . .

modifié¢ par un facteur ==———-—==. Au final, dans I'expression de I'(W — ep), il faut remplacer g°
par gg((cv +¢%) et My par My

=TI = gX (2 4+ A4)Mx

481
fermion cA cy
Boson gx "ca", ey Ve, Vi, Vr % %
w % 1 Couplage au Z : | e ,u , 7 —% —% + 2sin? Oy
Z COSQHW voir tableau ci-contre u,c,t % % — %sin2 O
T T [ 2.2
d,S,b —35 —35 + 3 Sin HW

5- calculer la valeur numérique du taux de désintegration du W vers une génération de leptons, en
prenant o = e2/4n = 1/128, my = 80,450 GeV, et g = ¢/sinfy, avec sin’ Oy = 0.232. Que
sera le taux de désintegration total du W, sachant qu’il y a trois générations de quarks et leptons ?

__eMw . aMwy 80.45 _
Twow = Bramow = T2y — 125150232 GeV = 226MeV

I'woad = Twoes = 3lwon = Tw = 3(Cwon + 2w o) ~ 2GeV

6- Calculez les largeurs partielles I'(Z — ver.) pour une masse du Z de 90 GeV. ( gz =
e/ (sin By cos Oy ) )

R e? 1\2 L (1y2) e? — a —
FZ%VEVE T 48wsin? Oy cos? Oy Mz <(2) + (2 ) 967 sin? Oy cos? Oy Mz = 24 sin? fyy (1—sin? Oyy-) Mz =
164MeV

7- Calculez les largeurs partielles pour les désintégrations Z — eTe™, @u, dd. N'oubliez pas de tenir
compte de la couleur. Prédire la largeur totale du Z dans le cadre du modéle standard.
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fermion CA cv A+ Ly 7 (MeV)
Ve, Vyy Vr % % % 164
e, u T —% —% + 2sin? Oy ~ —0.03 0.25 82
1, 5 5 — 3sin” Oy ~0.19 0.29 95
d,s,b —2 | -3+ Zsin®fy ~—034 [ 037 121

', = 3(FZ_>VE,7€ + FZ~>e+e* + 2rz_>a+u + 3FZ—>J+d):2'4GeV

19 Diffusion avec électrons, positons et photons

1- Donnez les diagrammes de Feynman et M pour
— la diffusion électron-électron
— la diffusion électron-positon
— la diffusion compton.

Diffusion électron-électron :

e” (p1) e (p3s) e (p1) e~ (p3)

On utilise les regles de Feynman pour calculer I'élément de matrice du graphe de gauche :
. —1Gu [ .
(271')4/ [a(ss)(pg)zgfyﬂu(ﬂ)(pl)] qgﬂ [u(34)(p4)zgfy”u(32)(p2)} % 54(]?1 — 3 — q)54(p2 oyt q)d4q

On intégre, multiplie par i, enléve un § de conservation de I'impulsion-énergie totale et on obtient M.

2
g _ _
= Mnuene = = ooy 169 )" ul) )| [569 1), (p2)|
Le graphe de droite est le méme avec les électrons sortants interchangeés, il va s’ajouter avec un change-

ment de signe & celui de gauche.
2

= Maaere + Maraite =~y [0 ()" (o) [0 ()™ 02|
2

+(19137p4)2 [ D 0] 369 ps s ) )|
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Diffusion électron-positon :

et (p2) et (p1) e (p2) et (ps)

e” (p1) e (p3) e (p1) e” (p3)

On utilise les regles de Feynman pour calculer I’élément de matrice du graphe de gauche :
. 19w |- .
(271')4/ |:a(83)(p3)2gfy#u(81)(pl)] qgﬂ |:U(32)(p2)Zg’yVU(S4)(p4)] % 54(}?1 — 3 — q)54(p2 gt q)d4q

On integre, multiplie par i et on obtient Mgqyche-
2

= Mgauche = _(1)137])3)2 |:a(53)(p3)fyﬂu(81)(pl)} [@(32)(1)2)7“,0(34) (p4):|
On utilise les régles de Feynman pour calculer I’élément de matrice du graphe de droite (annihilation

électron-positon suivie de la produption d’une paire) :
. s W (s . v, (s
(2m)* / [ s)ign o (on)| =3 [0 (p2)ignu pa)] x 8" (o1 + p2 — )54 (g — ps — pa)a'g

On inteégre, multiplie par i et on obtient M goite-

2
g _ _
= Maroite = ot ) [u(SS)(ps)’Y“v(84)(p4)] [v(”)(mmu(sl)(m)}
Le graphe de droite est le méme que le graphe de gauche avec 1’électron sortant échangé avec le positon

entrant. Il va s’ajouter avec un changement de signe & celui de gauche.

2
9 Z(sa) o (51) 7(s2) (s4)
= Mgauche + Mdrmte (p1 ; p3)2 [U (p3)7 u (pl)] {U (pZ)’Y;ﬂ) (p4)]
I P ) W (84) 7(s2) (1)
+(p1 + pg)? [“ (p3)y*v (P4)] [U (p2)Yuu (P1)}
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Diffusion Compton :

v (p2) e” (pa) v (p2) e” (pa)

e” (p1) v(p3) e (p1) v (p3)

On utilise les régles de Feynman pour calculer ’élément de matrice du graphe de gauche :
(2m)* / o) [0 payigy LI rion) (o) | 6669 x 8 — ps — (w2 — pa + )%
I (2 — m2c2)

On integre, multiplie par i et on obtient Mggyche-

2
= Mgauche = (pl — pg?z 22 |:ﬁ(34) (p4) %(52)(%1_ %3 + mc) ﬁ(SS)u(Sl)(pl)}
On utilise les régles de Feynman pour calculer I’élément de matrice du graphe de droite :

g —(S S S S
= Mroite = 1+ p2)? — 22 {U( D(pa) 459 (14 P2 +me) 752 ul 1)(1)1)}

Le graphe de droite n’est pas le méme que le graphe de gauche a un échange preés. Il va s’ajouter a
celui de gauche. M = M gquche + Maroite

2- On considére la diffusion électron-électron, calculer 'amplitude au carré de chacun des 2 graphes.

Le terme de gauche contribue au carré comme :

4 *
[ Mgauehel* = @lfwi NN [a(ﬁ)(p:s)v“u(“)(m)} [a(““')(p:s)w”u(“)(pl)]

§1 S2 83 54

(@69 (pa)yuu® (p2)] [a9) (pa)yu®?) (p2)]”

En utilisant les formul(is de Casimir :

o E— 9
= [M P=—————Tr (" 17" ) T
| gauche| 4(])1 _4p3)4 T(W 151’7 153) r('ﬁt ¢271/ 154)
A 49 v v v
= ‘Mgauche’2 = m [p!fp?, - gM (pl : p3) +P§P1] [p2up4u - guu(pZ : p4) + p4up2u]
2 8g"
= [Myauche|” = 7———73 [(P1 - p2)(P3 - 1) + (1 - Pa)(P3 - P2)]
(p1 — fs)

_ 2g . e .
= [Myauche|* = - pa) (2L P2) (P2 -Pa) + (p1 - pa)(pa - p2)] o on a utilise le fait que (py —ps)® =
p% + pg — 2p1 - p3 = —2p1 - p3 en négligeant les masses.

Le terme de droite s’obtient en échangeant ps et py.
294

| Maroite|” = 1 pa)? (1 p2)(p3 - pa) + (p1 - p3)(Pa - P2)]

3- Dans les formules de Casimir, intervient T' = 4°T'T4% montrer que :
- [ﬂarub] = [ﬂbrua]

~-T'=r
= AT = AT
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* T * * = *
— [@al'ws] = [aaTup] ™ = {uzyofub} = [UTFT’YOUG] = {u OO TA0 } = [uplug]
= — T
T = 7o]_ﬁTvo _ 7o <70FWO> 7 — ,VOTF,VOT 0_p

VA = A (P Y A0 = Ay Tyt y0
= 70910071400 k140

="y

4- Calculer le terme d’interférence entre les 2 graphes.

MaysuereMiyoite = Tor o8 = 2o 20 2o 2 1y ) )] [0 () )|

s1  S2 83 54

|
{a@‘*)(m 7 uls) (p } { (ps)ynu'® )(pg)]*
M gauche M3y pive = o = pa)? B Z Z Z Z uls (81)(1)1)} [ﬂ(s4)(p4)’7uu(sz)(p2)]
2 ]
(

s1  S$2 83 S4

(84

[()(plwu [u (p2)yu'®

* _
= MQGUCheMdroite -

4(p1 — p3)? )? Z Z a®) (pa)y <Z ut (pr)a 81)(P1)> 7 uls) (py)

S3  S4

)Vu (Z “(82)(p2)u(82)(p2)> ™) (p3)

gt
= MgaUCheM;klroite = 4(p1 2( 2 ZZ [ (33 p3 M ]51’}’ (% (54 (p4)] {TL(S“)(]M)’YM ]Zfzfyyu(s?’)(p
S3 84
gt
= Mgauche Mgy oite = A — )2( )2 ZZ [ (p3)7" prv*u' )(p4)] [ﬂ(SS)(ps)w B, ul* (p)
En utilisant les formules de CasmEr : C
-9

= MgaucheMzroite = 4(p1 — p3)2(p1 — p4)2TI‘ (7“ ]?5171/ %4’7;1 ]52’Yu ]53)
O AV

On utilise les propriétés suivantes des matrices v : y#v” ’y’\'y"*yu = =279y et yHAY ’y’\fyu = 4g"
pour calculer :
Y BV Bavu B2 B3 = ProbaxP2aP3s Y YV Y Yy 1

= —2D15ParD2aD357 Y VYA

= —8P1oParP2aP387Y AgoainP
- 2g"
= MgaUCheMdroite = (pl _ p3)2(p1 _ p4)2 (pl ’ pQ)Tr (%4 %3)
8g* 2g*

= M auc eM* ite — : : = : .
gauches™ droite (pl—ps)Q(Pl—m)z(pl P2)(ps - Pa) (Pl'p3)(p1'p4)(p1 P2)(ps - pa)

Pour des particules de masse mille p1+p2 = p3+py implique pi-pa = P3-pa,p1-P3 = P2-Pa,P1-Pa = D2-P3
29
(p1-p3)(p1 - pa

= MgaucheM:lroite = )(Pl : p2)2
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5- Montrez que pour la diffusion électron-électron & haute énergie (m. négligeable), on a
2o 4(pLp2)t + (p1-pa)* + (p1 - p3)*
‘M ‘ - 29 2 2

(p1-p3)*(p1 - pa)

= ‘HQ‘ = ‘Mgauche’2 + ’MdTOite‘Q + QMQGUCherlroite
= [M| = 24" (p1-p2)? + (p1-pa)®  (p1-p2)? + (p1 - p3)? 2(p1 - p2)?
(p1 - p3)? (p1 - pa)? (p1-p3)(p1 - pa)
2 (01 -92)% [(p1 - pa) + (p1 - p3))> + (01 - pa)* + (p1 - p3)*

(p1 'P3)2(p1 '1?4)2
Or (p1 - pa) + (p1 - p3) T (P4 +4P3) =p1- (121 +p2) =pi+p1-p2=p1-po
[ = 24 (p1-p2)* + (p1-pa)* + (p1 - p3)
(p1-p3)%(p1 - pa)?

= [M] = 29
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