
M1 - ENS LyonSymétries et Parti
ulesAnnée 2012 - 2013- Semestre 2bTD 1 : Ordres de grandeurs et symétries
1 Ordres de grandeur1- � Quelle distan
e par
ourt une parti
ule ultrarelativiste en 1 ns ?
l = 3.108 ∗ 10−9 = 0.3m� Quelle durée met une parti
ule de masse nulle pour traverser un proton ?taille d'un proton d = 1fm = 10−15m don
 t = 10−15

3.108 = 3.10−24s2- Le muon a un temps de vie de 2, 2 · 10−6s. De nombreux muons sont produits lors d'intera
tiondans la haute atmosphère de parti
ules 
osmiques énergétiques. Pourquoi peut-on les déte
ter ausol ? Peut-on envisager de fabriquer un 
ollisionneur à muons, et quels en seraient les avantageset les in
onvénients ?Energie typique des muons 
osmiques 1 à 10 GeV ⇒ γ = E/m = 10 GeV/100 MeV = 100 ⇒ β =
√

1 − 1/γ2 = 0.9999 On peut 
onsidérer que les parti
ules se dépla
ent à la vitesse de la lumière. Leurtrajet l=βγcτ = 100 × 3 · 108 × 2.2 · 10−6 = 66km bien plus grand que l'épaisseur de l'atmosphère(même ave
 7km pour 1 GeV, une grande partie arrive jusqu'à nous). Un 
ollisionneur à muons est don
possible, mais il faut produire, fo
aliser le fais
eau et l'a

élérer sans trop perdre par désintégrationmais 
ela permettrait de dépasser la limite en énergie due à la radiation syn
hrotron des 
ollisionneurs
e+e− 
ar 
ette perte est proportionnelle à m2, tout en gardant une parti
ule non 
omposite 
ommeproje
tile.3- Comparer les temps de vie des divers mésons suivants, déduire la nature des for
es à l'oeuvre, etproposer un shéma de désintegration :� π+ ( 
ontenu en quarks ud̄ ) M = 140MeV, cτ = 7, 8m
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Le temps de vie du π+ est 2, 6 10−8s. Il s'agit d'un temps relativement long. La désintégration se faitpar intera
tion faible : �W+

u

d̄

µ+

νµ

Notez que le τ est trop lourd (1.7 GeV/
2) et que le spin du pion valant 0, et le neutrino de spin 1/2 etde masse nulle dans le modèle standard est don
 d'héli
ité gau
he. Il faut don
 un anti-lepton gau
he.Or les intera
tions faibles violant la parité, une parti
ule de spin 1/2 est gau
he, une anti-parti
ulede spin 1/2 est droite. Les leptons 
hargés sont massifs don
 peuvent avoir une 
omposante de l'autrehéli
ité et d'autant plus que le masse est grande .� π0 ( quarks (uū− dd̄)/
√

2 ) M = 135MeV, τ = 8, 4 × 10−17sDésintégration rapide : éle
tromagnétique. �
u

ū

γ

γ

Notons que la désintégration en e+e− est supprimée. A haute énergie, l'intéra
tion éle
tromagnétique
onserve l'héli
ité qui tend à se 
onfondre ave
 la 
hiralité. Les 
ouplages photon-lepton-lepton possiblessont ave
 2 leptons identiques de même héli
ité (
hiralité) ou ave
 2 antileptons de même héli
ité ouave
 un lepton et un antilepton d'héli
ité di�érente (voir Quarks et Lepton d'Halzen et Martin se
tion6.6). Cette 
onservation de l'héli
ité n'est véri�ée qu'à des termes d'ordre mlepton/energie près.Le π0 a JPC = 0−+, son moment 
inétique total est J = 0 = L + S, en tant que 
ombinaison de 2quarks de spin 1
2 , il ne peut y avoir que S = 0 ou 1 et don
 S = L = 0 ou S = L = 1 par 
ombinaisondes moments 
inétiques. La parité du système e+e− est −1 et doit 
orrespondre à (−1)L+1, 
e quine permet que la 
ombinaison L = S = 0. Dès lors, la désintégration du π0 en e+e− n'est possiblequ'en se désintégrant en 2 fermions de même héli
ité. Or 
e 
ouplage est supprimé par un fa
teur

me

energie = me

mπ/2 = 0.5
67.5 = 7× 10−3 et don
 au 
arré : ( me

mπ/2

)2
= 6× 10−5 et le taux de bran
hement du

π0 en e+e− est de 6.46 × 10−8.� φ ( état lié ss̄ ) M = 1, 02GeV , Γ = 4, 4MeV. On signale que MK+ = 494MeV .
τ = ~/Γ = 6.5810−22/4.4 = 1.510−22s. Il s'agit don
 d'une désintégration forte. φ → K+ + K− (Ladésintégration en 3 pions semble plus favorable 
inématiquement mais né
essite des gluons su�sam-ment durs pour 
réer des paires qq̄. De tels gluons ne 
ouplent que très faiblement. Typiquement ungraphe de Feynman que l'on peut 
ouper en ne 
oupant que les lignes de gluons est supprimé pour
ette raison (règle de OZI du noms des 3 physi
iens qui l'ont remarqué ))

φ→ K+ +K− φ→ π−π0π+

�
s

s̄

s

ū

u

s̄

�
s

s̄

u
d̄

d
d̄

d
ū
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� J/ψ ( état lié cc̄ ) M = 3, 1GeV , Γ = 90keV. On signale que MD0 = 1, 9GeV .Le temps de vie est long on a une désint�gration faible. En e�et : J/ψ → D+ +D− impossible à 
ausede la masse des D, la désintégration en 3 Kaons est supprimée par OZI ) il reste don
 la désintégrationfaible en 2 leptons ou deux quarks.4- E
rire le 
arré de la 
harge de l'ele
tron en unit'e sans dimension.
α = e2/4πε0~c = 1/137

2 Groupes SU(2) et SU(3)1- On 
onsidère la matri
e U(θ, ~u) = e−iθ
P

a uaσa/2 où σi sont les matri
es de Pauli et ~u, un ve
teurunitaire. Montrer que U(θ, ~u) = cos
θ

2
− i~u · ~σ sin

θ

2

[σa, σb] = 2i
∑

c ǫabcσc = σaσb − σbσa

{σa, σb} = 2δabI = σaσb + σbσa

⇒ σaσb =
1

2
([σa, σb] + {σa, σb}) =

∑

c

iǫabcσc + δabI

⇒ (~a · ~σ)(~b · ~σ) =

(

∑

i

aiσi

)





∑

j

bjσj



 =
∑

i

∑

j

aibjσiσj

⇒ (~a · ~σ)(~b · ~σ) =
∑

i

∑

j

aibj

[

∑

k

iǫijkσk + δijI

]

= (~a ·~b)I + i(~a×~b) · ~σ

⇒ (~a · ~σ)2 = ~a2I = ~a2

⇒ (~u · ~σ)2 = I

e−iθ~u·~σ/2 =

∞
∑

n=0

(−iθ~u · ~σ/2)n

n!
=

∞
∑

n=0

(−iθ~u · ~σ/2)2n

(2n)!
+

∞
∑

n=0

(−iθ~u · ~σ/2)2n+1

(2n + 1)!

⇒ e−iθ~u·~σ/2 =

∞
∑

n=0

(−1)n (θ/2)2n

(2n)!
I − i

∞
∑

n=0

(−1)n (θ/2)2n+1

(2n + 1)!
~u · ~σ

⇒ e−iθ~u~σ/2 = cos(θ/2) − i~u · ~σ sin(θ/2)2- Montrer que dans SU(2), 2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2, et exprimer les états du produit tensoriel enfon
tion des états de la somme dire
te des représentations irrédu
tibles. On pré
isera la symétriedes états 
orrespondants aux représentations irrédu
tibles.
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On 
ombine deux représentations irrédu
tibles de SU(2), dont le module de représentation est donnépar les ve
teurs propres des opérateurs J2
i et Jzi

dans 
ha
une des deux représentations notés |j1m1〉et |j2m2〉 ave
 ji(ji + 1) et mi les valeurs propres 
orrespondantes pour J2
i et Jzi

. Le produit dire
t dedeux représentations irrédu
tibles de SU(2) admet un module de représentation donné par les ve
teurspropres des opérateurs J2 et Jz dont les j(j + 1) valeurs propres possibles 
orrespondent aux valeursde j allant de |j1 − j2| à j1 + j2. Pour 
haque valeur de j, il y a 2j+1 ve
teurs propres de valeur proprem de Jz allant de −j à +j.Dans le 
as de deux représentations de dimension 2, que l'on peut asso
ier à la 
ombinaison de deuxspins 1
2 , on obtient les valeurs de j'=1, 0 ave
 m′ = −1, 0, 1 pour j′ = 1 (un triplet) et m′ = 0 pourj'=0 (un état singlet). On a don
 2 ⊗ 2 = 3 ⊕ 1. On y 
ombine un 3eme spin 1

2 . En le 
ombinant ave

j′ = 1, on obtient j = 3

2 ,
1
2 ave
 respe
tivement 4 ve
teurs propres de Jz pour j = 3

2 , de valeurs propres
m = −3

2 ,−1
2 ,

1
2 ,

3
2 , et 2 ve
teurs propres de Jz pour j = 1

2 , de valeurs propres m = −1
2 ,

1
2 .
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En 
ombinant le 3eme spin 1
2 ave
 j′ = 0, on obtient un deuxième doublet de ve
teurs propres ave
les valeurs propres j = 1

2 et m = −1
2 ,

1
2 . On retrouve bien une somme dire
te d'une représentation dedimension 4 et de 2 représentations de dimension 2.On 
onsulte les tables de 
oe�
ients de Clebs
h-Gordan pour exprimer les fon
tions d'ondes asso
iées.On 
onstruit d'abord la fon
tion d'onde asso
iée à deux spins 1

2 .
|1
2

1

2
〉|1

2

1

2
〉 = |1 1〉

|1
2

1

2
〉|1

2
− 1

2
〉 =

1√
2
(|1 0〉 + |0 0〉)

|1
2

− 1

2
〉|1

2

1

2
〉 =

1√
2
(|1 0〉 − |0 0〉)

|1
2

− 1

2
〉|1

2
− 1

2
〉 = |1 − 1〉On 
ombine le 3eme ave
 le triplet et le singlet. Le nombre entre parenthèses étant la valeur de j'.

|1
2

1

2
〉|1 1〉 = |3

2

3

2
(1)〉

|1
2

1

2
〉|1 0〉 =

√

2

3
|3
2

1

2
(1)〉 −

√

1

3
|1
2

1

2
(1)〉

|1
2

1

2
〉|1 − 1〉 =

√

1

3
|3
2

− 1

2
(1)〉 −

√

2

3
|1
2

− 1

2
(1)〉

|1
2

1

2
〉|0 0〉 = |1

2

1

2
(0)〉

|1
2

− 1

2
〉|1 1〉 =

√

1

3
|3
2

1

2
(1)〉 +

√

2

3
|1
2

1

2
(1)〉

|1
2

− 1

2
〉|1 0〉 =

√

2

3
|3
2

− 1

2
(1)〉 +

√

1

3
|1
2

− 1

2
(1)〉

|1
2

− 1

2
〉|1 − 1〉 = |3

2
− 3

2
(1)〉

|1
2

− 1

2
〉|0 0〉 = |1

2
− 1

2
(0)〉Don
,

|1
2

1

2
〉|1

2

1

2
〉|1

2

1

2
〉 = |3

2

3

2
(1)〉

|1
2

1

2
〉|1

2

1

2
〉|1

2
− 1

2
〉 =

1√
2
(|1

2

1

2
〉|1 0〉 + |1

2

1

2
〉|0 0〉) =

1√
3
|3
2

1

2
(1)〉 −

√

1

6
|1
2

1

2
(1)〉 +

√

1

2
|1
2

1

2
(0)〉

|1
2

1

2
〉|1

2
− 1

2
〉|1

2

1

2
〉 =

1√
2
(|1

2

1

2
〉|1 0〉 − |1

2

1

2
〉|0 0〉) =

1√
3
|3
2

1

2
(1)〉 −

√

1

6
|1
2

1

2
(1)〉 −

√

1

2
|1
2

1

2
(0)〉

|1
2

1

2
〉|1

2
− 1

2
〉|1

2
− 1

2
〉 =

√

1

3
|3
2

− 1

2
(1)〉 −

√

2

3
|1
2

− 1

2
(1)〉

|1
2

− 1

2
〉|1

2

1

2
〉|1

2

1

2
〉 =

√

1

3
|3
2

1

2
(1)〉 −

√

2

3
|1
2

1

2
(1)〉

|1
2
−1

2
〉|1

2

1

2
〉|1

2
−1

2
〉 =

1√
2
(|1

2
−1

2
〉|1 0〉+|1

2
−1

2
〉|0 0〉) =

√

1

3
|3
2
−1

2
(1)〉+

√

1

6
|1
2
−1

2
(1)〉+ 1√

2
|1
2
−1

2
(0)〉

|1
2
−1

2
〉|1

2
−1

2
〉|1

2

1

2
〉 =

1√
2
(|1

2
−1

2
〉|1 0〉−|1

2
−1

2
〉|0 0〉) =

√

1

3
|3
2
−1

2
(1)〉+

√

1

6
|1
2
−1

2
(1)〉− 1√

2
|1
2
−1

2
(0)〉

|1
2

− 1

2
〉|1

2
− 1

2
〉|1

2
− 1

2
〉 = |1

2
− 1

2
〉|1 − 1〉 = |3

2
− 3

2
(1)〉

Les états du quadruplet sont symétriques. |32 3
2(1)〉, |32 1

2(1)〉, |32 − 1
2(1)〉, |32 − 3

2(1)〉Les états du doublet 
orrespondant à j'=1 sont mixed-symétriques : |12 1
2(1)〉, |12 − 1

2(1)〉Les états du doublet 
orrespondant à j'=0 sont mixed-antisymétriques : |12 1
2 (0)〉, |12 − 1
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3- On veut déterminer les 
onstantes de stru
tures de SU(3), 
'est à dire les fabc tels que
[λa/2, λb/2] = ifabcλc/2. Où les λi sont les matri
es de Gell-Mann génératri
es de SU(3).
λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 λ3 =





1 0 0
0 −1 0
0 0 0



 λ4 =





0 0 1
0 0 0
1 0 0





λ5 =





0 0 −i
0 0 0
i 0 0



 λ6 =





0 0 0
0 0 1
0 1 0



 λ7 =





0 0 0
0 0 −i
0 i 0



 λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



� Combien y a-t-il de 
onstantes fabc ?
8 × 8 × 8 = 512� Montrer que les matri
es de Gell-Mann obéissent à la normalisation tr(λiλj) = 2δij , où δij estle symbole de Kone
ker.Produit de matri
es Cij =

∑

k

AikBkjTra
e = somme des éléments diagonaux, pour un produit : ∑
i

Cii =
∑

i

∑

k

AikBki : 
ommutatif enAB.Les matri
es de Gell-Mann sont soit symétriques Aij = Aji soit antisymétriques Aij = −Aji.Les matri
es symétriques sont λ1, λ3, λ4, λ6 et λ8, les matri
es antisymétriques sont λ2, λ5 et λ7.La tra
e du produit d'une matri
e symétrique par une matri
e antisymétrique est nulle.La tra
e du produit de 2 matri
es symétriques vaut ∑
i

∑

k

AikBik et 
orrespond à la somme desproduits des éléments de matri
es. Parmi λ1, λ3, λ4, λ6 et λ8, seules λ3 et λ8 ont des éléments dematri
e non nuls au mêmes endroit et
Tr(λ3λ8) = 1√

3
− 1√

3
= 0La tra
e du produit de 2 matri
es antisymétriques vaut −∑

i

∑

k

AikBik et 
orrespond à l'opposé dela somme des produits des éléments de matri
es. Les 3 matri
es λ2, λ5 et λ7 ont leurs éléments dematri
es non nuls à des positions di�érentes.Don
 Tr(λiλj) = 0 si i 6= jIl nous reste à 
al
uler Tr(λiλi). Les matri
es λ1, λ3, λ4, λ6 et λ8 sont symétriques et leurs élémentssont rééls. Don
 Tr(λ2
i ) =

∑

i

∑

k A
2
ik.Les matri
es λ1, λ3, λ4 et λ6 ont tous leurs éléments non nuls sauf deux qui valent 1 et don
 leur tra
evaut 12 + 12 = 2

Tr(λ2
8) = 1

3(12 + 12 + 22) = 1
3(1 + 1 + 4) = 2Les matri
es λ2, λ5 et λ7 sont antisymétriques et leurs éléments sont imaginaires purs. Don


Tr(λ2
i ) = −∑i

∑

k A
2
ik =

∑

i

∑

k |Aik|2.Leurs éléments sont tous nuls sauf deux dont le module vaut 1 don
 leur tra
e vaut 12 + 12 = 2On a don
 bien Tr(λiλj) = 2δij .� En déduire que fabc =
−i
4
Tr(λc[λa, λb]) et que fabc est totalement antisymétrique.ENS - Lyon 6 M1 - Symétries et Parti
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Par dé�nition : [λa/2, λb/2] = i
∑

c

fabcλc/2 ⇒ 1

2

∑

c

fabcλc =
−i
4

[λa, λb]

⇒ 1

2
λd

∑

c

fabcλc =
−i
4
λd [λa, λb]

⇒ 1

2
Tr

(

∑

c

fabcλdλc

)

=
−i
4

Tr (λd [λa, λb])

⇒ 1

2

∑

c

fabcTr (λdλc) =
−i
4

Tr (λd [λa, λb])

⇒ 1

2

∑

c

fabc2δdc =
−i
4

Tr (λd [λa, λb])

⇒ fabd =
−i
4

Tr (λd [λa, λb])Pour prouver que fabd est totalement antisymétrique, on utilise les propriétés suivantes des tra
es etdes 
ommutateurs :






[AB,C] = A [B,C] + [A,C]B
[A,BC] = B [A,C] + [A,B]C = [AB,C] + [CA,B]
Tr(AB) = Tr(BA) et donc la trace d′un commutateur est toujours nulle.Si on permute a et b, le 
ommutateur 
hange de signe. On a bien fabd = −fbad.Si on permute b et d, fadb = −i

4 Tr (λb [λa, λd]) = −i
4 Tr ([λa, λd]λb) = −i

4 Tr ([λa, λdλb]) +
i
4Tr (λd [λa, λb]) = −fabdSi on permute a et d, fdba = −i

4 Tr (λa [λd, λb]) = −i
4 Tr ([λd, λb]λa) = −i

4 Tr ([λdλa, λb]) +
i
4Tr (λd [λa, λb]) = −fabd� Cal
uler les fabc .
f123 = 1

f458 = f678 =
√

3
2

f147 = f165 = f246 = f257 = f345 = f376 = 1
23 Isospin1- On note p†α et pα les opérateurs de 
réation et d'annihilation d'un proton dans l'état |α〉. Onnote n†α et nα les opérateurs de 
réation et d'annihilation d'un neutron dans l'état |α〉. Cesopérateurs véri�ent les relations d'anti
ommutations {pα, p

†
β

}

= pαp
†
β + p†βpα = δαβ , {p†α, p†β} =

0, {pα, pβ} = 0 et des relations similaires pour n†α et nα. Les opérateurs 
on
ernant un protonanti
ommutent ave
 
eux 
on
ernant un neutron.� Donner l'expression de l'opérateur T+ é
hangeant un neutron par un proton.
T+ =

∑

α

p†αnα� Donner l'expression de l'opérateur T− é
hangeant un proton par un neutron.ENS - Lyon 7 M1 - Symétries et Parti
ules



T− =
∑

α

n†αpα� Cal
uler T3 = [T+, T−].
T3 = [T+, T−]

= T+T− − T−T+

=
∑

α

∑

β

p†αnαn
†
βpβ −

∑

α

∑

β

n†αpαp
†
βnβ

=
∑

α

∑

β

(

p†α(nαn
†
β)pβ − n†α(pαp

†
β)nβ

)

=
∑

α

∑

β

(

p†α(δαβ − n†βnα)pβ − n†α(δαβ − p†βpα)nβ

)

=
∑

α

∑

β

(

p†αδαβpβ − p†αn
†
βnαpβ − n†αδαβnβ + p†βn

†
αnβpα

)

=
∑

α

∑

β

δαβ

(

p†αpβ − n†αnβ

)

=
∑

α

(

p†αpα − n†αnα

)

� Cal
uler [T3, T+] et [T3, T−]
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[p†αpα, p
†
βnβ] = p†αpαp

†
βnβ − p†βnβp

†
αpα

= p†αpαp
†
βnβ − p†βp

†
αpαnβ

= p†αpαp
†
βnβ + p†αp

†
βpαnβ

= p†α
{

pα, p
†
β

}

nβ

= δαβp
†
αnβ

[n†αnα, p
†
βnβ] = n†αnαp

†
βnβ − p†βnβn

†
αnα

= n†αnαp
†
βnβ + p†βn

†
αnβnα − p†βδαβnα

= n†αnαp
†
βnβ + n†αp

†
βnαnβ − p†βδαβnα

= n†αnαp
†
βnβ − n†αnαp

†
βnβ − p†βδαβnα

= −δαβp
†
βnα

[T3, T+] =
∑

α

∑

β

[p†αpα, p
†
βnβ] −

∑

α

∑

β

[n†αnα, p
†
βnβ]

=
∑

α

∑

β

δαβp
†
αnβ +

∑

α

∑

β

δαβp
†
βnα

= 2
∑

α

p†αnα

= 2T+
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[p†αpα, n
†
βpβ] = p†αpαn

†
βpβ − n†βpβp

†
αpα

= p†αpαn
†
βpβ + n†βp

†
αpβpα − n†βδαβpα

= p†αpαn
†
βpβ + p†αn

†
βpαpβ − n†βδαβpα

= p†αpαn
†
βpβ − p†αpαn

†
βpβ − n†βδαβpα

= −δαβn
†
βpα

[n†αnα, n
†
βpβ] = n†αnαn

†
βpβ − n†βpβn

†
αnα

= n†αnαn
†
βpβ − n†αn

†
βpβnα

= n†αnαn
†
βpβ + n†αn

†
βnαpβ

= n†α
{

nα, n
†
β

}

pβ

= δαβn
†
αpβ

[T3, T−] =
∑

α

∑

β

[p†αpα, n
†
βpβ] −

∑

α

∑

β

[n†αnα, n
†
βpβ]

= −
∑

α

∑

β

δαβn
†
βpα −

∑

α

∑

β

δαβn
†
αpβ

= −2
∑

α

n†αpα

= −2T−

� Quelle est l'algèbre engendrée par les opérateurs t+ =
1√
2
T+, t− =

1√
2
T−, t3 =

1

2
T3

[t+, t−] =
1

2
[T+, T−] =

1

2
T3 = t3

[t3, t+] =
1

2

1√
2
[T3, T+] =

1

2

1√
2
2T+ = t+

[t3, t−] =
1

2

1√
2
[T3, T−] =

1

2

1√
2
(−2)T− = −t−C'est l'algèbre SU(2) de l'isospin.2- Le proton et le neutron sont des états d'isospin I = 1/2 Les ∆ des états d'isospin I = 3/2, demasse M = 1, 232GeV, et les pions, des états d'isospin I = 1.� Comparer les amplitudes des pro
essus

π+ + p→ π+ + p
π− + p→ π− + p
π− + p→ π0 + nen fon
tion de l'amplitude des pro
essus idéaux M3/2 et M1/2ENS - Lyon 10 M1 - Symétries et Parti
ules



On a trouvé en 2.2- la 
ombinaison de 3 spins :12 , i
i on a 3 isospins 1
2 , 
e qui donne la même 
hose.Plus pré
isément, on à une 
ombinaison du pion (isospin j=1, m=-1,0,1) ave
 un proton (isospinj=1/2 m=+1/2) ou un neutron (isospin j=1/2 m=-1/2)

p+ π+ 
orrespond à |12 1
2〉|1 1〉 = |32 3

2〉
p+ π− 
orrespond à |12 1

2〉|1 − 1〉 =
√

1
3 |32 − 1

2 〉 −
√

2
3 |12 − 1

2〉

n+ π0 
orrespond à |12 − 1
2 〉|1 0〉 =

√

2
3 |32 − 1

2〉 +
√

1
3 |12 − 1

2〉Puisque l'intéra
tion forte 
onserve l'isospin, 〈3
2m|M|12m〉 = 0On a M3/2 = 〈3

2m|M|32m〉 et M1/2 = 〈1
2m|M|12m〉 don
 :

〈π+ + p|M|π+ + p〉 = M3/2

〈π− + p|M|π− + p〉 = 1
3M3/2 + 2

3M1/2

〈π− + p|M|π0 + n〉 =
√

2
3 M3/2 −

√
2

3 M1/2� dans le 
as où l'énergie dans le 
entre de masse vaut 1, 232GeV (voir les données expérimentalesde la Figure 1, montrer que
σtot(π+ + p)

σtot(π− + p)
= 3

σtot(π+ + p)

σtot(π− + p)
=

|〈π+ + p|M|π+ + p〉|2
|〈π− + p|M|π− + p〉|2 + |〈π0 + n|M|π− + p〉|2

=
|M3/2|2

1
9 |M3/2 + 2M1/2|2 + 2

9 |M3/2 −M1/2|2

≃
9|M3/2|2
3|M3/2|2Le ∆ est 
onnu de I=3/2, don
 M3/2 >>M1/2 pour ECM=1,232 GeV.

Référen
es[1℄ JB Zuber, Introdu
tion à la théorie des groupes et de leurreprésentations,http://hal.ar
hives-ouvertes.fr/do
s/00/09/29/68/PDF/
el-41.pdf[2℄ D. Gri�ths, Introdu
tion to Elementary Parti
les, Wiley Ed., 2008, (p134)Matri
es de Pauli
σx ≡

(

0 1
1 0

)

, σy ≡
(

0 −i
i 0

)

, σz ≡
(

1 0
0 −1

)

σiσj = δij + i
∑

k

εijkσk, (~a · ~σ)(~b · ~σ) = ~a ·~b+ i~σ · (~a×~b)

σ†i = σi = σ−1
i , ei~θ·~σ = cos θ + i(θ̂.~σ) sin θ

ENS - Lyon 11 M1 - Symétries et Parti
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Fig. 1 � Se
tion e�
a
e totale mesurée de di�usion pion sur proton [1℄ en fon
tion de la masse invariantedu système.
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M1 - ENS LyonSymétries et Parti
ulesAnnée 2012 - 2013- Semestre 2bTD 2 : Intera
tion Faible
Rappels matri
es gammaLes matri
es γ sont des matri
es 4 × 4

γ0 = γ0 ≡
(

I2 0
0 −I2

)

; γi = −γi ≡
(

0 σi

−σi 0

)

γ5 ≡ iγ0γ1γ2γ3

−→
Σ ≡

( −→σ 0
0 −→σ

)

σµν ≡ i

2
(γµγν − γνγµ)

6a ≡ aµγ
µPropriétés :

(

γ0
)2

= I4
(

γi
)2

= −I4
(

γ5
)2

= I4
γ0† = γ0 γi† = −γi γ5† = γ5 ; γµ† = γ0γµγ0(µ = 0, 1, 2, 3)Quelques relations :

γµγµ = 4 ; γµγ5 + γ5γµ = 0
γµγν + γνγµ = 2gµν ; 6a 6b+ 6b 6a = 2a · b
γµγνγµ = −2γν ; γµ 6aγµ = −2 6a
γµγνγλγµ = 4gνλ ; γµ 6a 6bγµ = 4a · b
γµγνγλγσγµ = −2γσγλγν ; γµ 6a 6b 6cγµ = −2 6c 6b 6aTra
es des matri
es gamma : la tra
e du produit d'un nombre impaire de matri
es γ est nulle.On a Tr(γµ) = 0;Tr(γ5) = 0;Tr(I4) = 4.

Tr(γµγν) = 4gµν ; Tr(6a 6b) = 4a · b
Tr(γµγνγλγσ) = 4

[

gµνgλσ − gµλgνσ + gµσgνλ
]

;
Tr(6a 6b 6c 6d) = 4 [(a · b)(c · d) − (a · c)(b · d) + (a · d)(b · c)]
Tr(γ5γµγν) = 0 ; Tr(γ5 6a 6b) = 0

Tr(γ5γµγνγλγσ) = 4iεµνλσ ; Tr(γ5 6a 6b 6c 6d) = 4iεµνλσaµbνcλdσRelations ave
 les spineurs :
ū = u†γ0 v̄ = v†γ0

(6p−mc)u = 0 (6p+mc)v = 0
ū(6p−mc) = 0 v̄(6p +mc) = 0
ūu = 2mc v̄v = −2mc

∑

s=↑,↓ u
(s)ū(s) = 6p+mc

∑

s=↑,↓ v
(s)v̄(s) = 6p−mcENS - Lyon 15 M1 - Symétries et Parti
ules



Formules de Casimir :
∑

spina,spinb

[ūaΓ1ub] [ūaΓ2ub]
∗ = Tr

[

Γ1(6pb +mbc)Γ̄2(6pa +mac)
]

∑

spina,spinb

[v̄aΓ1ub] [v̄aΓ2ub]
∗ = Tr

[

Γ1(6pb +mbc)Γ̄2(6pa −mac)
]

∑

spina,spinb

[ūaΓ1vb] [ūaΓ2vb]
∗ = Tr

[

Γ1(6pb −mbc)Γ̄2(6pa +mac)
]

∑

spina,spinb

[v̄aΓ1vb] [v̄aΓ2vb]
∗ = Tr

[

Γ1(6pb −mbc)Γ̄2(6pa −mac)
]où Γ1 et Γ2 sont des matri
es 4 × 4 et où Γ̄i ≡ γ0Γ†

iγ
04 Taux de désintégration du muonUn muon d'impulsion q se désintègre en eν̄eνµ par l'intera
tion faible. Le µ en se transformant en

νµ (d'impulsion p1) par l'emission d'un W− virtuel ( = hors-
ou
he, l'énergie P 0
W et l'impulsion ~P du

W sont telle que (P 0)2 − |~P |2 ≪ m2
W ). Le W se désintègre rapidement en eν̄e, d'impulsions p2 et p3.On veut 
al
uler le taux de désintegration du µ. On va négliger les masses des fermions dans l'état�nal, on travaille dans le réferentiel du µ, et on néglige P 2 par rapport m2

W dans le propagateur du W .1- Dessiner le diagramme de Feynman.
�W−

µ−

e−

ν̄e

νµ

2- E
rivez l'élément de matri
e M(µ → eν̄eνµ), en négligeant l'impulsion du W , 
'est à dire, onutilise l'approximation d' intera
tion de 
onta
t entre quatre fermions gau
hes. Vous obtenez
M(µ → eν̄eνµ) de M(n → pe−ν̄e) (du 
ours).

M(µ → eν̄eνµ) = GF√
2

[

ūνµγ
σ(1 − γ5)uµ

] [

ūeγσ(1 − γ5)vνe

]3- Démontrer une des formules de Casimir.
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Je 
onsidère la formule :
A =

∑

spina,spinb

[ūaΓ1vb] [ūaΓ2vb]
∗Puisque les éléments entre 
ro
hets sont des nombres 
omplexes (matri
e 1 × 1), on peut é
rire :

[ūaΓ2vb]
∗ = [ūaΓ2vb]

†et don

[ūaΓ2vb]

∗ =
[

u†aγ
0Γ2vb

]†

= v†bΓ
†
2γ

0†ua

= v†bΓ
†
2γ

0ua

= v†bγ
0γ0Γ†

2γ
0ua

= v̄bΓ̄2uad'où,
A =

∑

spina,spinb

[ūaΓ1vb]
[

v̄bΓ̄2ua

]

=
∑

spina

ūaΓ1





∑

spinb

vbv̄b



 Γ̄2ua

=
∑

spina

ūaΓ1(6pb −mbc)Γ̄2uaEn utilisant le fait que les spineurs sont à 4 
omposantes et que Q ≡ Γ1(6pb −mbc)Γ̄2 est une matri
e
4 × 4, on a :

A =
∑

spina

4
∑

i,j=1

ūaiQijuaj

=
∑

spina

4
∑

i,j=1

Qijuaj ūai

=

4
∑

i,j=1

Qij





∑

spina

uaūa





jiLe passage de la première à la deuxième ligne 
i-dessus est possible 
ar les 
omposantes sont de simplesnombres et que le produit des nombres est 
ommutatif. À la troisième ligne, on 
onsidère la matri
e
4 × 4 dont l'élément ji est donné par des produits de la 
omposante j de ua par la 
omposante i de
ūa. On pro�te du fait qu'on a 2 sommes sur les indi
es des matri
es 4 × 4 et spineurs pour passer duproduit de matri
e 1 × 4 ∗ 4 × 4 ∗ 4 × 1 à une tra
e d'un produit de matri
e 4 × 4 ∗ 4 × 4.

A =

4
∑

i,j=1

Qij [ 6pa +mac]ji

= Tr[Q(6pa +mac)]

= Tr[Γ1(6pb −mbc)Γ̄2(6pa +mac)]
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4- Mettez l'élément de matri
e au 
arré pour un muon non polarisé.Pour un muon non polarisé, on doit faire la moyenne sur les 2 états de polarisation du muon (fa
teur1/2). On doit aussi faire la somme sur tous les états �nals de polarisation (sans faire la moyenne).D'où,
|M|2 =

1

2

∑

all spins

M∗(µ → eν̄eνµ)M(µ→ eν̄eνµ)

=
G2

F

4

∑

all spins

[

ūνµγ
σ(1 − γ5)uµ

] [

ūνµγ
α(1 − γ5)uµ

]∗ [
ūeγσ(1 − γ5)vνe

] [

ūeγα(1 − γ5)vνe

]∗

=
G2

F

4
Tr
[

γσ(1 − γ5)(6pµ +mµc)γ
α(1 − γ5) 6pνµ

]

Tr
[

γσ(1 − γ5) 6pνeγα(1 − γ5) 6pe

]où on a utilisé :
γα(1 − γ5) = γ0

[

γα(1 − γ5)
]†
γ0

= γ0(1 − γ5†)γα†γ0

= γ0γα†γ0 − γ0γ5†γα†γ0

= γα − γ0γ5γα†γ0

= γα + γ5γ0γα†γ0

= γα + γ5γα

= γα − γαγ5

= γα(1 − γ5)Le terme en mµ 
orrespond à la tra
e du produit d'un nombre impair de matri
e gamma. Sa tra
e estdon
 nulle. Il reste à 
al
uler les tra
es :
Tr
[

γσ(1 − γ5) 6pµγ
α(1 − γ5) 6pνµ

]

= pµδ
pνµκ

Tr
[

γσ(1 − γ5)γδγα(1 − γ5)γκ
]

Tr
[

γσ(1 − γ5)γδγα(1 − γ5)γκ
]

= Tr
[

γσ(1 − γ5)(1 − γ5)γδγαγκ
]

= 2Tr
[

γσ(1 − γ5)γδγαγκ
]

= 2Tr
[

(1 + γ5)γσγδγαγκ
]

= 8
(

gσδgακ − gσαgδκ + gσκgδα + iεσδακ
)
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Don
,
Tr
[

γσ(1 − γ5) 6pµγ
α(1 − γ5) 6pνµ

]

= 8
(

pσ
νµ
pα

µ + pα
νµ
pσ

µ − (pνµ · pµ)gσα + iεσδακpµδ
pνµκ

)De même (en se rappelant que ε0123 = −ε0123)
Tr
[

γσ(1 − γ5) 6pνeγα(1 − γ5) 6pe

]

= 8
(

peσpνeα
+ peαpνeσ

− (pνe · pe)gσα − iεσβατp
β
νe
pτ

e

)Ne sont non nuls que les termes 
orrespondant à la 
ontra
tion de 2 tenseurs symétriques ou de 2tenseurs antisymétriques. Les produits symétriques donnent :
64
[

2(pνµ · pe)(pµ · pνe) + 2(pνµ · pνe)(pµ · pe) − 4(pνµ · pµ)(pνe · pe) + 4(pνµ · pµ)(pνe · pe)
]En utilisant εσδακεσβατ = εσαδκεσαβτ = 2(δδ

βδ
κ
τ − δδ

τ δ
κ
β), les produits antisymétriques donnent :

64
[

2
(

(pνµ · pe)(pµ · pνe) − (pνµ · pνe)(pµ · pe)
)]et don
 :

|M|2 =
G2

F

4
64
[

4(pνµ · pe)(pµ · pνe)
]

= 64G2
F (pνµ · pe)(pµ · pνe)

5- L'espa
e de phase à n parti
ules en sortie est donné par l'expression :
d3nΦn(q; p1, p2, . . . , pn) = (2π)4 δ4

(

q −
n
∑

i=1

pi

)

n
∏

i=1

d3~pic
3

(2π)3 2Eioù pi = (Ei, c~pi) est le quadrive
teur d'une parti
ule sortante et q est le quadrive
teur de l'étatinitial. On rappelle que pour une parti
ule de masse m, ∫ d4pδ
(

p2 −m2c4
)

=
d3~pc3

2E
. La largeurde désintégration du muon en unité naturelle (c = 1,~ = 1) dans son référentiel est donnée par

dΓ(µ → eν̄eνµ) =
|M|2
2mµ

dΦ3,Toutes les parti
ules de l'état �nal ont une masse nulle. On a :
dΓ(µ → eν̄eνµ) =

|M|2
2mµ

[

(2π)4δ4 (q − p1 − p2 − p3)
d3~p3

2E3(2π)3

]

d3~p2

2E2(2π)3
d3~p1

2E1(2π)3

=
|M|2
2mµ

[

(2π)4δ4 (q − p1 − p2 − p3)
d4p3

(2π)4
δ(p2

3)2π

]

d3~p2

2E2(2π)3
d3~p1

2E1(2π)3

=
|M|2
2mµ

(2π)δ
(

(q − p1 − p2)
2
) E1dE1dΩ1

2(2π)3
E2dE2dΩ2

2(2π)3Il est utile de dé�nir xi = 2Ei/mµ. Véri�er que dans 
e 
as
pi · pj =

m2
µ

2
(1 − xk)pour i 6= j 6= k.ENS - Lyon 19 M1 - Symétries et Parti
ules



pi · pj =
1

2
(pi + pj)

2 − p2
i − p2

j =
1

2
(pµ − pk)

2 =
m2

µ

2
(1 − 2

pk · pµ

m2
µ

+
p2

k

mµ
) =

m2
µ

2
(1 − 2

Ek

mµ
)Dans le reférentiel où le muon est au repos pµ = (mµ,~0) don
 pk · pµ = EkmµOn néglige les masses des parti
ules sortantes don
 p2

i = p2
j = p2

k = m2 = 0La 
onservation de l'énergie-impulsion implique pµ = p1 + p2 + p36- Expliquer pourquoi xi doit être 
ompris entre 0 et 1.L'énergie minimale d'un produit de sortie est nulle. L'énergie maximale disponible est la masse dumuon mais la 
onservation de l'impulsion implique qu'une seule parti
ule ne peut en emporter qu'auplus la moitié.7- Montrer que |M|2 ne dépend pas des dire
tions des parti
ules �nales dans le référentiel propredu muon.
|M|2 est proportionnel à (pνµ · pe)(pµ · pνe) et pµ = pνµ + pe + pνe . Dans le référentiel propre du muon,
pµ · pνe = mµEνe et

(

pνµ + pe

)2
= m2

e + 2pνµ · pe

= 2pνµ · pe

= (pµ − pνe)
2

= m2
µ − 2pµ · pνeoù on a négligé la masse de l'éle
tron. On en déduit que que pνµ · pe =

m2
µ

2
− pµ · pνe =

m2
µ

2
−mµEνeet don
 :

|M|2 = 64G2
F (pνµ · pe)(pµ · pνe)

= 64G2
F

(

m2
µ

2
−mµEνe

)

mµEνe

= 64G2
Fm

2
µEνe

(mµ

2
− Eνe

)ne dépend d'au
un angle.8- On peut faire les intégrales sur les angles de dΓ(µ → eν̄eνµ) en utilisant la fon
tion δ restante.La dire
tion de ~p1 est libre (peut servir pour dé�nir l'axe des z), don
 ∫ dΩ1 → 4π. On dé�nit
cos θ2 tel que ~p1 · ~p2 = E1E2 cos θ2, don

dΓ(µ → eν̄eνµ) =

|M|2
2mµ

δ(m2
µ(1 − (x1 + x2) +

x1x2

2
(1 − cos θ2))

(4π)(2π)

4(2π)5
E1dE1E2dE2d cos θ2

=
|M|2
2mµ

1

2(2π)3
E1dE1E2dE2

2

m2
µx1x2

=
|M|2
2mµ

1

4(2π)3
dE1dE2 =

|M|2mµ

32(2π)3
dx1dx2ENS - Lyon 20 M1 - Symétries et Parti
ules



9- Montrer que 1 − x1 ≤ x2 ≤ 1 ≤ 2 − x1.
0 = (q − p1 − p2)

2

= m2
µ − 2mµE1 − 2mµE2 + 2p1 · p2

= m2
µ(1 − x1 − x2 + (1 − x3))

= m2
µ(2 − x1 − x2 − x3)Don
, x1 + x2 + x3 = 2 et 
haque xi doit être entre 0 et 1. Don
,

0 ≤ x3 ≤ 1

1 ≤ 2 − x3 ≤ 2

1 ≤ x1 + x2 ≤ 2

1 − x1 ≤ x2 ≤ 2 − x1Comme 0 ≤ x1 ≤ 1, 2 − x1 ≥ 1.10- Montrer que |M|2 = 16G2
Fm

4
µx1(1 − x1). Pré
iser quelle parti
ule est la parti
ule 1.En prenant pour parti
ule 1, le ν̄e, on a d'après les questions pré
édentes :

|M|2 = 64G2
Fm

2
µE1

(mµ

2
− E1

)

= 64G2
Fm

2
µmµx1

1

2

(mµ

2
− mµ

2
x1

)

= 16G2
Fm

4
µx1(1 − x1)

11- Obtenez
Γ =

G2
Fm

5
µ

192π3
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dΓ(µ→ eν̄eνµ) =
|M|2mµ

32(2π)3
dx1dx2 =

G2
Fm

5
µx1(1 − x1)

2(2π)3
dx1dx2

Γ =

∫ 1

0

m5
µG

2
F (1 − x1)x1

16π3
dx1

∫ 1

1−x1

dx2

=
m5

µG
2
F

16π3

∫ 1

0
(1 − x1)x

2
1dx1

=
m5

µG
2
F

16π3

[

x3
1

3
− x4

1

4

]1

0

=
m5

µG
2
F

16π3

1

12

=
m5

µG
2
F

192π3

12- Quelle est son temps de vie en se
ondes ?
τµ = Γ−1 =

192π3 × 6.58212 10−25GeV s

(0, 105GeV)5 × (1.166 10−5GeV−2)2
= 2.2 10−6 s (il faut réintroduire ~ pour les unités)
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M1 - ENS LyonSymétries et Parti
ulesAnnée 2012 - 2013- Semestre 2bArti
le 1 : K2 → 2π

5 Symétries C, P et T1- Pré
iser le moment orbital et le spin des mesons π0 (JPC = 0−+), ρ0 (JPC = 1−−) et a1

(JPC = 1++).Pour les mésons P = (−1)L+1, donne la parité de L et C = (−1)S+L donne 
elle de L+S. Don
 on a :
Particule L+ S L S

π0 pair 0 0
ρ0 impair 0 1
a1 pair 1 12- Le η se désintègre prin
ipalement en η → 2γ(39%), η → 3π(56%),η → ππγ(5%). Pourquoile mode en 2π est-il interdit ? Pouvez-vous expliquer pourquoi le mode en 3π a un rapportd'embran
hement 
omparable au mode en 2γ ?La parité G = C · R2 où R2 
orrespond à une rotation de 180o autour de l'axe 2 d'isospin. Cela
orrespond à transformer I3 en -I3. En général la valeur propre de G est pour les mésons (−1)S+L+I .Les intera
tions fortes 
onservent la parité G. Le η a L=0, S=0 et JPC = 0−+ et I=0. Le η est un étatpropre de G de valeur propre +1. Le pion est un triplet d'isospin, mais a les mêmes autres nombresquantiques. Le π est un état propre de G de parité -1.Parité de 2π=+1 et la parité de l'η est -1. Comme L et S=0 pour le π, pas possible de 
onstruire uneétat de L=1 qui donne J=0. Impossible par intera
tion éle
tromagnétique et forte.Parité de 3π=-1, mais G = (−1)3 = −1 alors qu'elle vaut +1 pour η don
 pas OK pour les intera
tionsfortes. : seules les intera
tions éle
tromagnétiques sont permises.
C(2γ) = (−1)2 = 1 Ok Pγ = −1 mais P (2γ) ∗ (−1)L=-1, ave
 L=1 est possible 
ar Sγ = 1, don
 onpeut avoir J=0 ave
 L=1 et S=1, la désintégration éle
tromagnétique est possible.
6 Symétrie CP1- En étudiant la désintégration du muon (µ− −→ e−ν̄eνµ) et en vous rappelant qu'il n'existe quedes neutrinos d'héli
ité gau
he et des anti-neutrinos d'héli
ité droite, montrez que si P̂ et Ĉ sontbrisées par l'intera
tion faible, la 
ombinaison ĈP̂ est, a priori, 
onservée.Si on applique Ĉ à 
ette réa
tion, on transforme les neutrinos d'héli
ité gau
he en anti-neutrinosde même héli
ité 
e qui est impossible. De même, l'appli
ation de P̂ 
onserve la 
harge mais inversel'héli
ité 
e qui est également impossible. Par 
ontre, l'appli
ation de ĈP̂ va donner les bonnes héli
ités.ENS - Lyon 23 M1 - Symétries et Parti
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2- Les kaons neutres produits par intera
tion forte ne sont pas états propres de la 
ombinaison desymétries dis
rètes ĈP̂ . On pose1 que Ĉ|K̄0〉 = |K0〉, et on rappelle que les kaons neutres ontune parité intrinsèque négative.a) Dé�nissez les états propres de CP , K0
1 et K0

2 , à partir des états propres de l'intera
tionforte K0 et K̄0, en 
hoisissant 
omme 
onvention :
ĈP̂ |K0

1 〉 = +|K0
1 〉 et ĈP̂ |K0

2 〉 = −|K0
2 〉.On a

ĈP̂ |K0〉 = −|K̄0〉puisque les kaons neutres ont une parité négative. On peut poser
|K0〉 = cos θ|K0

1 〉 + sin θ|K0
2 〉 et |K̄0〉 = − sin θ|K0

1〉 + cos θ|K0
2 〉puisqu'on passe d'une base orthonormée à une autre par une rotation. En appliquant ĈP̂ , on obtient :

ĈP̂ |K0〉 = cos θĈP̂ |K0
1 〉 + sin θĈP̂ |K0

2 〉 = cos θ|K0
1 〉 − sin θ|K0

2 〉 = −|K̄0〉 = sin θ|K0
1〉 − cos θ|K0

2 〉.Cette relation est véri�ée par θ = π/4 (mod π) soit
|K0〉 =

1√
2
(|K0

1 〉 + |K0
2 〉) et |K̄0〉 =

1√
2
(−|K0

1 〉 + |K0
2 〉)

b) Quelles sont les désintégrations possibles des kaons neutres ? A quels états propres de ĈP̂
orrespondent-elles ?Les kaons neutres se désintègrent prin
ipalement en π0 + π0 ou en π+ + π−. É
rivons la 
onservationdu moment 
inétique dans 
es désintégrations. On a :
~JK = ~Jπ + ~Jπ +~lπ,π ⇐⇒ ~0 = ~0 +~0 +~lπ,πsoit ~lπ,π = 0. La parité de 
es états est donnée par 
elle du moment angulaire don
 
es états sont pairs.De plus, ils sont états propres de Ĉ ave
 la valeur propre +1 (π0 + π0) ou (−1)l = +1 (π+ + π−). Ilssont don
 états propres de ĈP̂ ave
 la valeur propre +1.Les modes de désintégration à trois pions sont eux états propres de ĈP̂ ave
 la valeur propre -1. Si on
onserve ĈP̂ , K0

1 peut don
 se désintégrer en 2π 
e qui n'est pas le 
as de K0
2 .
) Pourquoi asso
ie-t-on K0

L à K0
2 et K0

S à K0
1 ? Comment se manifeste la brisure de ĈP̂ et enquoi 
ela a�e
te-t-il la dé�nition des états K0

L et K0
S ?

1En fait, 
'est une 
onvention. On peut aussi poser : Ĉ|K̄0〉 = −|K0〉, mais alors il faut 
hanger les dé�nitions de K0
1et K0

2 qui en dé
oulent.ENS - Lyon 24 M1 - Symétries et Parti
ules



La désintégration en 3π est beau
oup plus longue que la désintégration en 2π. La durée de vie de K0
2est don
 beau
oup plus grande que 
elle de K0

1 
e qui explique l'identi�
ation de 
es parti
ules à K0
Let K0

S . La brisure de ĈP̂ se traduit par la possibilité de K0
L de se désintégrer en 2π. On peut don
é
rire

|K0
L〉 ≈ |K0

2 〉 + ε|K0
1 〉à un (petit) fa
teur de normalisation près.7 Produ
tion et régéneration des mésons K neutres.Les mésons les plus légers sont les mésons π et K, de massemπ ≃ 140MeV/c2 etmK ≃ 500MeV/c2.Les baryons les plus légers sont les nu
léons, le Λ et les Σ, de masse mN ≃ 940MeV/c2 , mΛ ≃

1115MeV/c2 et mΣ ≃ 1190MeV/c2 . On rappelle les étrangetés de 
es parti
ules :
S(Λ) = S(Σ+) = S(Σ0) = S(Σ−) = −1

S(K0) = S(K+) = +1

S(K̄0) = S(K−) = −11- Quels sont les 
ouples parti
ule/anti-parti
ule ?Les 
ouples parti
ule/anti-parti
ule sont (K0, K̄0) et (K+,K−). Attention, les Σ± ont tous les deuxdes étrangetés de -1 et ne sont pas anti-parti
ules l'un de l'autre.2- E
rire les réa
tions de produ
tion des mésons K+ et K0 à partir d'un fais
eau de pions. E
rireles réa
tions de produ
tion des mésons K− et des K̄0.On 
onsidère les di�érentes réa
tions permettant de produire des K. On va montrer que les réa
tionsfaisant intervenir des K0,+ permettent de ne faire intervenir qu'une seule parti
ule supplémentairealors que deux parti
ules sont né
essaires pour la 
réation des K−, K̄0.Réa
tion Ci → Cf Bi → Bf Ei → Ef CX BX EX

π− + p→ K0 +X −1 + 1 → 0 + CX 0 + 1 → 0 +BX 0 + 0 → +1 + EX 0 +1 −1
π− + p→ K+ +X −1 + 1 → +1 +X 0 + 1 → 0 +BX 0 + 0 → 1 +X −1 +1 −1
π− + p→ K̄0 +X −1 + 1 → 0 + CX 0 + 1 → 0 +BX 0 + 0 → −1 + EX 0 +1 +1
π− + p→ K− +X −1 + 1 → −1 + CX 0 + 1 → 0 +BX 0 + 0 → −1 +X +1 +1 +1Quelles sont les parti
ules ave
 une étrangeté de −1 ? On a Σ+,0, Λ. Pour la première réa
tion, on peutproduire un Λ ou un Σ0 qui ont tous les deux une 
harge nulle et un nombre baryonique de +1. Pourla se
onde réa
tion, on peut produire un Σ− qui a la bonne 
harge et le bon nombre baryonique.Qu'en est-il pour les deux dernières équations ? On doit produire une parti
ule d'étrangeté +1 
'est àdire K0,+ ou Σ̄. Cependant 
es parti
ules n'assurent pas la 
onservation du nombre baryonique et nepeuvent don
 être produites seules.3- On veut produire des mésons K+ ou K0 en bombardant de la matière par un fais
eau de π.Quelle énergie doit on 
hoisir si on veut éviter de produire aussi des K− et des K̄0.ENS - Lyon 25 M1 - Symétries et Parti
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Comme démontré à la question pré
édente, les réa
tions que l'on peut 
onsidérer sont
π− + p → K0 + Λ π− + p → K+ + Σ−

π− + p → K̄0 +K0 + n π− + p → K+ +K− + nLes réa
tions indiquées sur la première ligne fournissent des parti
ules dont la masse est plus faible que
elles produites dans les réa
tions de la se
onde ligne. Ainsi, 
es réa
tions possèdent une énergie seuilplus faible. Si on utilise des pions ave
 une énergie intermédiaire, on ne peut produire que des K+ etdes K0 et pas des K− et des K̄0.Cal
ulons les énergies des réa
tions de 
réations de deux et trois parti
ules. On utilise la masse inva-riante entre le référentiel du laboratoire avant la réa
tion et le référentiel du 
entre de masse après laréa
tion. On a don
a
Mi =

(

∑

Ei

)2
−
(

∑

~pi

)2

= (Tπ +mπ +mp)
2 − p2

π

= (Tπ +mπ +mp)
2 − Tπ(Tπ + 2mπ)

= (mπ +mp)
2 + 2Tπmpalors que

Mf =
(

∑

mi

)2pour l'énergie 
orrespondant à l'énergie seuil. Dans le 
as de la réa
tion π− + p→ K+ +Σ−, on trouve
T=

(mK +mΣ)2 − (mπ +mp)
2

2mp
=

(500 + 1190)2 − (140 + 940)2

2 × 940
≈ 899 MeValors que pour π− + p→ K̄0 +K0 + n, on obtient

Tπ =
(mK̄ +mK +mn)2 − (mπ +mp)

2

2mp
=

(500 + 500 + 940)2 − (140 + 940)2

2 × 940
≈ 1, 38 GeVIl existe une large plage d'énergies des pions in
idents qui ne donnent que les parti
ules désirées.aOn a

p
2
π = E

2
π − m

2
π = (Eπ − mπ)(Eπ + mπ) = Tπ(Tπ + 2mπ)4- Dans le système des kaons neutres, on a Ĉ|K̄0〉 = |K0〉, Les états propres de ĈP̂ sont dé�nis par

ĈP̂ |K0
1 〉 = +|K0

1 〉 et ĈP̂ |K0
2 〉 = −|K0

2 〉.Soit
|K1〉 =

1√
2
(|K0〉 − |K̄0〉) et |K̄2〉 =

1√
2
(|K0〉 + |K̄0〉)Si on produit des fais
eau de K0, les K1 vont se désintégrer plus vite. On doit don
 observer desdésintégrations en 2π près de la sour
e et des désintégrations en 3π loin de la sour
e (Gell-Mann& Pais, 1955). Le K2 a été observé à BNL en 1956 (Lederman et al.). τ1 = 0.895 × 10−11s (qqmm) et τ2 = 5.11−8s (qq m !)Le mélange entre K0 et K̄0 est possible 
ar l'intéra
tion faible ne 
onserve ni l'isospin ni l'étran-geté. Dessiner des diagrammes de Feynman représentant la transformation d'un K0 en K̄0.ENS - Lyon 26 M1 - Symétries et Parti
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


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5- Quel est le prin
ipe de fon
tionnement d'un �régénérateur de K0
S� ?Le fais
eau de K0 peut s'interpréter 
omme un fais
eau 
omposé à part égale de |K0

1 〉 et de |K0
2 〉.Après une propagation sur une distan
e importante, les |K0

1 〉 dont la durée de vie est beau
oup plus
ourte ont disparu. Dès qu'on introduit un é
ran sur le trajet de 
e fais
eau, il faut repasser dans labase K0, K̄0 qui est la bonne base vis à vis de l'intera
tion forte. L'état entrant dans le régénérateurest
|Xin〉 = |K0

2 〉 =
1√
2
(|K0〉 + |K̄0〉)A la sortie du régénérateur, on obtient un état |Xout〉 tel que

|Xout〉 =
1

√

|f |2 + |f̄ |2
(f |K0〉 + f̄ |K̄0〉) =

1
√

|f |2 + |f̄ |2

(

f + f̄√
2

|K0
2 〉 +

f − f̄√
2

|K0
1 〉
)où f et f̄ sont les transmissions des K0 et des K̄0 à travers le régénérateur.On peut obtenir à la sortie une quantité importante de |K0

1 〉 si f et f̄ sont très di�érentes.
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M1 - ENS LyonSymétries et Parti
ulesAnnée 2012 - 2013- Semestre 2bArti
le 2 : La dé
ouverte du J/ψ
8 Introdu
tionL'arti
le proposé est l'un des deux arti
les publiés en même temps, annonçant la dé
ouverte d'unerésonan
e min
e pouvant s'interpréter 
omme une résonan
e cc̄.Cette dé
ouverte a valu le prix Nobel aux deux représentants des groupes expérimentaux : BurtonRi
hter[2℄ et Samuel C. C. Ting[1℄ en 1976. Cette dé
ouverte s'est faite simultanément au SPEAR,
ollisionneur e+e− du SLAC en Californie et à l'AGS, syn
hrotron à protons du laboratoire nationalde Brookhaven (BNL) dans l'état de New York dans une expérien
e de type 
ible �xe où un fais
eaude protons était envoyé sur une 
ible de Beryllium.Nous étudierons en parti
ulier l'arti
le du groupe de S.C.C. Ting [1℄ dont la des
ription expéri-mentale est un peu plus fournie. Au
un des deux groupes ne re
her
hait un quatrième quark.Les résonan
es, aujourd'hui appelées mésons ve
teurs ρ, ω, φ, avaient été dé
ouvertes à des massesde l'ordre de 1 GeV et des largeurs Γρ=100 MeV, Γω=10 MeV, Γφ=5 MeV. Toutes avaient J(spin)=1,C(Conjugaison de 
harge)=-1 et P (parité)=-1, 
omme le photon, elles étaient 
onsidérées 
ommedes photons massifs ! Le groupe de S.C.C. Ting re
her
hait 
es �photons� et voulait isoler leur dés-intégration en e+e− (quel est leur rapport de bran
hement dans 
e mode ?) pour étudier 
omment laphotoprodu
tion de 
es résonan
es suivie de la désintégration en e+e− interférait ave
 la produ
tiondire
te de paires γ → e+e−, a�n de mesurer l'amplitude de produ
tion de 
es résonan
es. Ils étudiaient
es résonan
es dans un fais
eau de 1011γ/s à DESY à l'aide d'un spe
tromètre permettant une réso-lution en masse de 5 MeV/
2 permettant aussi de distinguer les paires e+e− des paires de π+π− ave
un pouvoir dis
riminant ≫ 108.[3℄ (D'où vient 
ette né
essité ? )
Taux de bran
hement : e+e− pions

ρ 4.510−5 0.989
ω 7.310−5 0.98
φ Γ = 1.27 keV Γ = 4.26 MeV D'où la né
essité de dis
riminer entre

π+π− et e+e−.La question du nombre de "photons massifs" de 
e type, motiva la 
onstru
tion d'une nou-velle expérien
e auprès de l'a

élérateur AGS de protons de 28.5 GeV de BNL a�n de traquer denouvelles résonan
es de 
e type jusqu'à des masses de 5 GeV, produite lors d'intera
tions fortes
p+ p→ V 0 +X → e+e− +X (où V 0 est utilisé pour représenter une parti
ule neutre qui se désintègreave
 une topologie observée dans le déte
teur qui ressemble à la lettre V).C'est 
e dispositif qui va permettre la dé
ouverte du J .
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9 Un peu d'histoire9.1 Angle de CabibboEn 1963, Cabibbo avait introduit le doublet u, d' pour tenir 
ompte de la désintégration desparti
ules étranges [4℄. En suggérant que les quarks états propres de propagation (masse) étaientdi�érents des états propres de l'intera
tion faible, 
ela permettait d'expliquer les désintégrations dutype K+ → µ+νµ, sans remettre en 
ause le s
héma organisant les fermions gau
hes en doublets del'intera
tion faible ( νe

e−

)

,

(

νµ

µ−

)

,

(

u
d

) , dont les seules transitions possibles étaient entre lesmembres d'un même doublet.Cabibbo fait l'hypothèse que le 
ourant faible 
ouple au doublet (

u
d′

) tel que :
{

d′ = d cos θc + s sin θc

s′ = −d sin θc + s cos θc
.Le rapport des largeurs partielles Γ (K+ → µ+νµ)

Γ (π+ → µ+νµ)
∼ tan2 θc 
orrespond à un angle θc de 13.15◦.

K+













�W+

u

s̄

µ+

νµ

Fig. 2 � Désintégration K+ → µ+νµ9.2 Mé
anisme de Glashow - Iliopoulos - MaianiLes prédi
tions de taux de désintégration du K0 → µ+µ− si l'on ne 
onsidère que les transitions
u↔ d′ sont beau
oup plus élevées que l'observation expérimentale Γ

(

K0
L → µ+µ−

)

Γtot
(

K0
L

) = (9.1±1.9)·10−9 .L'introdu
tion d'un quark 
, 
omplétant un doublet faible ave
 le s', rendait un nouveau diagrammepossible, dont l'amplitude aurait annulé totalement le diagramme déjà imaginé, si 
e n'avait été pourla di�éren
e de masse des quarks u et 
. En 1970, Glashow - Iliopoulos - Maiani prédisent l'existen
ed'un quatrième quark [5℄.
K0

L













�u WW νµd
s̄

µ+

µ−

K0
L













�
 WW νµd
s̄

µ+

µ−

M ∼ cos θc sin θc M ∼ − cos θc sin θcFig. 3 � Deux 
ontributions à la désintégration K0 → µ+µ−Ce mé
anisme n'a pas été pris au sérieux avant la dé
ouverte en 1974 de la résonan
e cc̄, 
ar ilné
essitait l'invention d'une nouvelle parti
ule, pour régler un problème parti
ulier d'une théorie quidemandait en
ore largement à être validée par l'expérien
e.Entretemps, Kobayashi et Maskawa avaient déjà théoriquement introduit une 3eme famille de quarks,ENS - Lyon 29 M1 - Symétries et Parti
ules



seule façon d'introduire une phase 
omplexe dans la matri
e de rotation de Cabibbo, phase qui per-mettait d'introduire naturellement la violation de CP dans les intera
tions faibles.10 Dispositif expérimentalLa zone expérimentale ave
 les arrivées de fais
eau est s
hématisée sur la �gure 4. Le déte
teur del'expérien
e est entouré et agrandi sur la �gure 5.Les deux plans de déte
tion jouent un r�le di�érent. Les aimants (notés M pour "magnet") dé�é-
hissent les parti
ules 
hargées dans le plan verti
al. Pour pouvoir les suivre et mesurer leur quantitéde mouvement, le dispositif est in
liné verti
alement de 10.33◦. Le déte
teur est 
omposé de deux brasidentiques disposés 
ha
un à 14.6◦ horizontalement de 
haque 
�té de la ligne de fais
eau. Il inter
eptedon
 seulement les paires de parti
ules émises de la 
ible dans 
es dire
tions.

Fig. 4 � Le hall expérimental est auprès de l'AGS. L'expérien
e 598, entourée, est au bout de la stationA
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Fig. 5 � S
héma du dispositif expérimental. Les parties marquées M sont des aimants dipolaires, lesA0, A, B, et C sont des 
hambres à �l proportionnelles (8000 �ls en tout), les parties marquées a, bsont des hodos
opes 8x8, S désigne 3 stations de 
alorimètres au verre au plomb. CB, C0, et Ce sontdes 
ompteurs �erenkov10.1 Le spe
tromètreComposé des aimants et des 
hambres à �l, il permet de mesurer la quantité de mouvementdes parti
ules qui traversent le déte
teur. Le sens de la 
ourbure détermine la 
harge. En ef-fet, la traje
toire est mesurée par les plans de 
hambre à �l notées A0, A, B, et C dans la �-gure 5. Les 11 plans de �ls de 20 µm de diamètre espa
és de 2 
m ainsi que leurs orienta-tions sont s
hématisés dans la �gure 7. Une parti
ule 
hargée ionise le gaz de la 
hambre à�ls qu'elle traverse. Les �ls sont mis sous haute tension positive et les éle
trons libérés se dé-pla
ent dans le 
hamp ainsi 
réé vers le �l le plus pro
he (lignes de 
hamp voir �gure 6).
Fig. 6 � Champ éle
trique dans une
hambre à �ls

Ils ionisent eux-aussi le gaz, et une avalan
he se formequi va donner un signal éle
trique 
olle
té sur les �lsd'anode. Les ions, eux se dépla
ent - plus lentement versles plans de 
athode. La 
harge totale 
olle
tée est pro-portionnelle à l'énergie déposée par ionisation tant quele tension reste en-dessous d'un 
ertain seuil. Au-dessus,de 
e seuil, le passage d'une parti
ule ionisante provoquedes 
laquages (
hambres à étin
elles, 
ompteurs geiger).Le nombre de plans tou
hés permet d'éliminer le bruitde fond de 
onversions de photons de basse énergie qui nelaissent du signal que dans quelques plans. Le rayon de
ourbure de la traje
toire dans le plan perpendi
ulaire au
hamp magnétique des aimants est relié à la quantité de mouvement par p⊥ (GeV/
)=0.3 ·Q(e) ·B(T ) ·
R(m). La mesure de la masse invariante de la paire e+e− né
essite la 
onnaissan
e de la quantité demouvement de 
ha
un des éle
trons. La résolution spatiale d'une 
hambre à �l est de l'espa
ement diviséENS - Lyon 31 M1 - Symétries et Parti
ules



par √12, i
i ∼6 mm. Pour rappel la varian
e d'une distribution uniforme entre -d/2 et d/2, normaliséeà 1 (f(x)=1/d sur l'intervalle et 0 ailleurs) vaut σ2 =

∫ d/2

−d/2
x2 ·f(x) ·dx−

(

∫ d/2

−d/2
x · f(x) · dx

)2 , don

σ = d/

√
1210.2 L'hodos
ope

Fig. 7 � Orientation relative des �ls desdi�érentes stations de 
hambres à �ls

Un hodos
ope (a,b) sur la �gure 5 est habituellement
omposé de s
intillateurs organiques. Les s
intillateurs,matériaux qui réagissent au passage d'une parti
ule ioni-sante par l'émission de lumière, sont très utile pour dé-
len
her l'a
quisition de donnée 
ar leur signal lumineuxest émis en ∼0.1 ns, 
e qui permet une prise de dé
isionrapide, basée sur la 
oïn
iden
e du signal observé et del'arrivée d'un paquet de protons sur la 
ible.10.3 Compteurs �erenkovUne parti
ule 
hargée émet de la radiation �erenkov,lorsque 
elle-
i va plus vite que la vitesse de phase dela lumière dans le milieu qu'elle traverse. L'angle θc d'émission de la radiation par rapport à ladire
tion de la parti
ule, pour une parti
ule de vitesse βc dans un milieu d'index de réfra
tion n est
cos θc = 1/(nβ). Le seuil d'émission est don
 βseuil = 1/n et γseuil = n/

√
n2 − 1. Comme γ = E

m , lesseuils d'émission sont di�érents pour des parti
ules de masses di�érentes. En parti
ulier, les 
ompteurs�erenkov peuvent être réglés de façon à ne pas être sensibles aux pions mais bien aux éle
trons.L'indi
e de réfra
tion de CB est 
hoisi de façon à être sensible aux éle
trons au-dessus de 10 MeVet insensible aux pions en dessous de 2.7 GeV. Les 
ompteurs sont remplis d'H2 et leurs fenêtresd'entrée et de sortie sont de 125 et 250 µm. Le nombre de photons produit par intervalle de longueuret d'énergie E du photon pour une parti
ule de 
harge Qe vaut :
d2N

dxdE
=
αQ2

~c
sin2 θc ≃ 370 sin2 θc(E)eV −1cm−1.La lumière produite est ré�é
hie sur un miroir sphérique et renvoyée vers un photomultipli
ateur. Latension de 
elui-
i doit êtr ajustée pour êêt e�
a
e pour un éle
tron, mais pas bruyant, 
ar dans la zonede fais
eau le niveau de radiation est très élevé et il faut éviter les 
oïn
iden
es fortuites. Les photomul-tipli
ateurs sont réglés de tels sorte que le passage d'un éle
tron produise un signal de 8 photoéle
trons.
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Fig. 8 � Photo du 
ompteur �erenkov Ce,ave
 les 
hambres multi-�ls (A,B,C) à l'ar-rière et des plans d'hodos
ope (Z). Tout àl'arrière on devine le 
alorimètre au verreplombé (U)

10.4 CalorimètresPla
és derrière les autres déte
teurs, les 
alorimètresmesurent l'énergie des parti
ules en les faisant intéragirdans un matériau dense et si possible s
intillant ettransparent. Le nombre de parti
ules produites lors del'intera
tion (éle
tromagnétique pour les e− et γ et ha-dronique pour les hadrons) est proportionnel à l'énergiede la parti
ule. Ces parti
ules vont elles-même interagirdans le milieu. Les parti
ules 
hargées produisent dela lumière (s
intillation et/ou �erenkov) et 
elle-
i est
olle
tée. Après 
alibration ave
 des fais
eaux d'énergie
onnue, l'intensité lumineuse 
olle
tée permet de mesurerl'énergie de la parti
ule in
idente. A�n de 
apturertoute la gerbe de parti
ule il faut prévoir plusieurs (habituellement entre 5 et 8 ) longueurs d'intera
tionsnu
léaires. La �gure 9 montre pour quels éléments 
ettelongueur est la plus faible et don
 la plus intéressante dupoint de vue du 
oût en déte
teur. Les matériaux 
hoisisi
i sont du plexiglas au plomb et du verre au plomb(PbO, qui est transparent mais d'un Z plus élevé que leSi et plus dense que la sili
e). Il y a 10 longueurs d'intera
tion de telle sorte que toute l'énergie desparti
ules sera 
ontenue. Chaque déte
teur est segmenté en environ 100 
ellules a�n de mesurer ladire
tion de la traje
toire des éle
trons.

Fig. 9 � Longeur d'intera
tion nu
léaire di-visée par la masse volumique (λI/ρ) et deradiation (éle
tromagnétique) X0/ρ (pourles éléments au-dessus de Z=20)

Pour 
alibrer la réponse du 
alorimètre aux éle
tronsil faut pouvoir inje
ter un fais
eau d'éle
tron dans la lignede fais
eau. La 
alibration est faite au moyen de la dés-intégration en vol de π0 → γe+e− (τ = 10−19s). Dansle bras où la polarité des aimants est prévue pour séle
-tionner les 
harges négatives, le e+ est dé�é
hi vers l'ex-térieur. La 
oïn
iden
e entre le �erenkov où il est mesuréet les hodos
opes et les autres �erenkov permet de s'as-surer qu'on a un fais
eau pur d'éle
tron pour 
alibrer (aumoyen de la quantité de mouvement re
onstruite grâ
e auspe
tromètre)10.5 BlindageToutes les se
ondes 1012 protons arrivent sur une 
ibledont la longueur est de 10% de la longueur de 
ollision. Il y a don
 autant de parti
ules qui arriventdans la zone expérimentale. Pour protégéer les déte
teurs et les physi
iens, ils ont dû ré
upérer plusde blo
s de bétons que n'étaient disponible à BNL ! Il leur a fallu 10 000 tonnes de béton, 100 tonnesde plomb, 5 tonnes d'uranium et 5 tonnes de savon( !) (au-dessus de C0, entre M1 et M2 et autour del'entrée de Ce pour stopper les neutrons lents). Même 
omme ça le niveau de radiation dans la zone uneheure après l'arrêt de fais
eau était de 50 mSv/h (2.5 fois la dose annuelle admise pour un travailleurdu nu
léaire en Fran
e !)
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11 Questions1- Pourquoi 
hoisir des 
ollisions proton-noyau plut�t qu'un fais
eau e+e− ? Quels sont les problèmesinhérents aux deux options ?Ave
 une 
ollision proton-noyau, on peut 
ouvrir plusieurs énergie de 
entre de masse des intéra
tionsélémentaires. De plus, les parti
ules re
her
hée sont produites via l'intéra
tion forte, 
'est don
 pluse�
a
e. Le problème est de tenir le �ux de parti
ules produites lors de 
es 
ollisions.2- La 
ible 
hoisie pour le fais
eau de proton est du beryllium. Pourquoi 
e 
hoix plut�t que duplomb ou du tungstène ?On emploie des 
ibles en beryllium 
ar elles 
hau�ent moins et don
 risquent moins de fondre. LeurA faible fait qu'il y a moins de nu
leons de basse énergie par intera
tion, sa 
apa
ité 
alori�que entre20◦C et la moitié de la température de fusion est 5 fois plus élevée que 
elle du tungstène par exemple,et il est fa
ile à refroidir.3- Pourquoi 
hoisir 14.6◦ 
omme angle par rapport à la ligne de fais
eau ? (Quelle est l'énergie
inétique dans le référentiel du 
entre de masse à laquelle le taux de produ
tion du V0 in
onnusera le plus élevé ? Pour un V0 produit par un fais
eau de protons de 28.5 GeV dans le référentieldu laboratoire. Ave
 
ette énergie 
inétique dans le 
entre de masse, à quel angle sont émis lapaire d'éle
trons re
her
hée et produite par désintégration ?)La produ
tion est maximale à la résonnan
e qui 
orrespond à la parti
ule produite au repos dans sontréférentiel propre. Si on se limite aux désintégrations e+e− partant à 90◦ ( moins de 
ontaminationdue aux restes de la 
ollision plus sur l'avant ), 
es éle
trons émergeront à un angle de 14.6◦ dans lelaboratoire ( où les protons ont une énergie de 28.3 GeV.4- Vu sa position, à quoi peut bien servir le 
ompteur CB ?Le 
ompteur Cerenkov CB sert à déte
ter les éle
trons provenant de la désintégration π0 → γe+e−.Un éle
tron est déte
té dans CB , l'autre part dans le spe
tromètre ave
 des 
ara
téristiques de 
e fait
onnue. Cela permet d'étalonner le spe
tromètre ave
 des éle
trons 
onnus.5- Quelles sont les hypothèses faites sur 
e que peut être la résonan
e ?Les parti
ules 
harmés ou les a ( un tru
 qui a à voir ave
 l'uni�
ation éle
trofaible d'après le papierréféren
é dans l'arti
le ) ou le boson Z0.
ENS - Lyon 34 M1 - Symétries et Parti
ules



Référen
es[1℄ J.J Aubert et al., Experimental Observation of a Heavy Parti
le J, Physi
al Review Letters, 33,1404, 1974.[2℄ J.-E. Augustin et al., Dis
overy of a Narrow Resonan
e in e+ e− Annihilation, Physi
al ReviewLetters, 33, 1406, 1974.[3℄ S. C. C. Ting,The dis
overy of the J parti
le : A personal re
olle
tion, Review of Modern Phy-si
s, 49, 1977.[4℄ N. Cabibbo, Unitary symmetry and leptoni
 de
ays Physi
al Review Letters, 10, 531, 1963.[5℄ S. L. Glashow, J. Iliopoulos, L. Maiani, Weak Intera
tions with Lepton-Hadron Symmetry, Phy-si
al Review, D2, 1585, 1970.[6℄ Parti
le Data Group, Review of Parti
le Physi
s, Journal of Physi
s, G37, se
tions 27-28, 2010.

ENS - Lyon 35 M1 - Symétries et Parti
ules

http://dx.doi.org/10.1103%2FPhysRevLett.33.1404
http://dx.doi.org/10.1103%2FPhysRevLett.33.1406
http://link.aps.org/doi/10.1103/RevModPhys.49.235
http://dx.doi.org/10.1103%2FPhysRevLett.10.531
http://dx.doi.org/10.1103%2FPhysRevD.2.1285
http://pdg.lanl.gov


M1 - ENS LyonSymétries et Parti
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le 3 : Dé
ouverte des 
ourants neutres
12 Règles de Feynman12.1 Rappel des règles de Feynman pour QEDNous rappelons les règles de Feynman pour QED. Pour QCD et l'intéra
tion faible, le s
héma de
al
ul est le même, seules 
hangent les expressions des vertex et des propagateurs. Les vertex pourtoutes les intéra
tions du modèle standard sont donnés dans la se
tion 12.2.1- A 
haque ligne externe, asso
ier un quadri-ve
teur énergie-impulsion p1, ..., pn et rajouter une�è
he2 indiquant la dire
tion positive dans le temps3. A 
haque ligne interne asso
ier un quadri-ve
teur énergie-impulsion q1, ..., qn.2- Les lignes externes 
ontribuent des fa
teurs :� Ele
trons { Entrant : u flèche vers le vertex

Sortant : ū flèche sortant du vertex� Positrons { Entrant : v̄ flèche sortant du vertex
Sortant : v flèche vers le vertex� Photons { Entrant : ǫµ

Sortant : ǫ∗µ3- Vertex : Chaque vertex 
ontribue un fa
teur igγµ où g = −q
√

4π/~c où q est la 
harge de laparti
ule (et non de l'anti-parti
ule). Pour les leptons 
hargés q = −e et don
 g =
√

4πα maispour les quarks u on a q=2e/3 et pour les quarks de type d on a q=-e/34- Propagateurs : 
haque ligne interne 
ontribue un fa
teur i(γµqµ +mc)

q2 −m2c2
pour les fermions et

−igµν

q2
pour les photons (ave
 les indi
es se 
ontra
tant ave
 
eux des lignes fermioniques que lepropagateur 
onne
te).5- Conservation de l'énergie et de l'impulsion : Pour 
haque vertex on é
rit une fon
tion delta dela forme (2π)4δ4(k1 + k2 + k3) où les k sont les énergies-impulsions entrantes dans le vertex (unsigne moins pour les énergies-impulsions sortantes)6- Intégrer sur les énergies-impulsions internes : pour 
haque qi é
rire un fa
teur d4qi

(2π)47- Simpli�er la fon
tion δ : Le résultat in
luera un fa
teur (2π)4δ4(p1 + p2..... − pn) 
orrespondantà la 
onservation énergie-impulsion globale. Simpli�er 
e fa
teur et multiplier par i pour obtenir
M8- Antisymétrisation : In
lure un signe moins entre deux diagrammes qui ne di�èrent que parl'é
hange de deux ele
trons (ou positons) entrants (ou sortants), ou par l'é
hange d'un éle
tronentrant ave
 un positon sortant (ou vi
e-versa).2di�érente de la �è
he dénotant le 
ourant fermmionique.3Cette �è
he du temps permet de distinguer les lignes entrantes des lignes sortantes.
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12.2 Règles de Feynman (à l'arbre)12.2.1 lignes ligne externe entrante ligne externe sortantes
alaire (spin 0) rien rienfermion (spin 1
2) u ūanti fermion (spin 1

2) v̄ vve
teur (spin 1) ǫµ ǫ∗µligne interne (propagateur)s
alaire (spin 0) i

q2 −m2fermion (spin 1
2) i (6q +m)

q2 −m2ve
teur sans masse (spin 1) −igµν

q2ve
teur massif (spin 1) −igµν + i
qµqν

m2

q2 −m212.2.2 vertexLes vertex sont tirés de D. Gri�ths, Introdu
tion to Elementary Parti
les, Wiley Ed., 2008 (annexD.3). QED
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Intéra
tion faible

ENS - Lyon 39 M1 - Symétries et Parti
ules



13 Intera
tions neutrino-quark1- Les fais
eaux de neutrinos produits en laboratoire sont en général des fais
eaux de neutrinosmuoniques. Expliquer les raisons de 
e 
hoix.Les parti
ules pouvant être a

élérées sont les parti
ules 
hargées. Un fais
eau de neutrinos est obtenu àpartir d'un fais
eau de parti
ules 
hargées se désintégrant en neutrinos. Pour avoir le temps d'a

élérerune parti
ule, il faut qu'elle ne se désintègre pas trop rapidement. Parmi les parti
ules 
hargées, seulsles pions et muons sont utilisables. Pour avoir des fais
eau de neutrinos d'énergie 
onnues, il faut quela désintégration de la parti
ule 
hargée se fasse en 2 
orps. Il ne reste don
 que le pion qui 
onvientet qui se désintègre en muon+neutrino.ENS - Lyon 40 M1 - Symétries et Parti
ules



2- On 
onsidère un �ux de neutrino muonique traversant une 
ible matérielle. L'intera
tion par
ourant 
hargé (CC) du neutrino est gouverné par le diagramme suivant :
�W−(q)

νµ(k)

d(p)

µ−(k′)

u(p′)

E
rire l'élément de matri
e 
orrespondant.
M = ūµ

(

−i gW

2
√

2
γα(1 − γ5)

)

uνµ

−i(gαβ−qαqβ/m2
W )

q2−m2
W

ūu

(

−i gW

2
√

2
γβ(1 − γ5)

)

udVud où Vud est une 
ompo-sante de la matri
e CKM.3- Donner le diagramme de Feynmann pour l'intera
tion CC entre antineutrino muonique et quark.
�W−(q)

ν̄µ(k)

u(p)

µ+(k′)

d(p′)

4- En supposant que q2 << m2
W , en négligeant les masses et en ne tenant pas 
ompte de la matri
eCKM, le 
arré de l'élement de matri
e sommé sur les spins pour l'intera
tion νµd s'é
rit : |Mνd|2 =

64G2
F (k.p)(k′.p′) où GF est la 
onstante de Fermi. En déduire le même 
arré pour l'intera
tion

ν̄µu.Le diagramme est identique mais la ligne muonique est orientée en sens inverse. Du 
oup, dans l'élémentde matri
e, la position du neutrino est interverti ave
 
elle du muon. Ave
 les notations des diagrammes
i-dessus, 
elà revient à é
hanger k et k′. Et don
 |Mν̄u|2 = 64G2
F (k′.p)(k.p′)5- La se
tion e�
a
e di�érentielle de la réa
tion s'é
rit : dσ

dΩ = 1
64π2s

|M|2 où s est le 
arré de l'énergiede la 
ollision dans le 
entre de masse de la 
ollision. Cal
uler dσ
dΩ (νµd) et dσ

dΩ(ν̄µu). On notera θl'angle fait, dans le référentiel du 
entre de masse, entre la dire
tion du neutrino in
ident et ladire
tion du quark sortant. On négligera les masses.
s = (k + p)2 = 2k.p = (k′ + p′)2 = 2k′.p′ don
 dσ

dΩ (νµd) =
G2

F s

4π2 . On a aussi k + p = k′ + p′,don
 k − p′ = k′ − p et don
 k.p′ = k′.p (on néglige les masses). Dans le 
entre de masse k.p′ =

Eν̄Ed − Eν̄Ed cos(θ) =
√

s
2

√
s

2 (1 − cos(θ)) = s
4(1 − cos(θ)). Don
 dσ

dΩ(ν̄µu) =
G2

F s

16π2 (1 − cos(θ))26- En déduire le rapport σ(νd)
σ(ν̄u) .ENS - Lyon 41 M1 - Symétries et Parti
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On intègre sur l'angle solide et don
 σ(νd) =
G2

F s
π et σ(ν̄u) =

G2
F s

8π

∫ π
0 (1 − cos(θ))2 sin(θ)dθ et par
hangement de variable u = cos(θ), l'intégrale se réé
rit : ∫ 1

−1 (1 − u)2 du =
∫ 1
−1(1+u2)du = 2+ 2

3 = 8
3d'où σ(ν̄u) =

G2
F s

3π et σ(νd)
σ(ν̄u) = 37- Que faudrait-il prendre en 
ompte pour passer de σ(νd)

σ(ν̄u) à σ(νN)
σ(ν̄N) où N est un nu
léon ?Les distributions de partons u(x, y), d(x, y), ....8- Si l'on refait le même exer
i
e ave
 les 
ourants neutres, quel paramètre physique supplémentaireva intervenir ?L'angle de Weinberg θW par le fait que le 
ouplage Zqq fait intervenit sin2 θW et queMW = MZ cos θWL'image 10 montre les rapports de se
tion e�
a
e neutrino-matière σNC

σCC
mesurées pour les neutrinos et les antineutrinos.

Fig. 10 � Valeurs des rapports NC/CC mesuréspar les expérien
es Gargamelle et HPWF 
ompa-rées aux prédi
tions du Modèle Standard.

Ces rapports sont prédits par la théorie éle
-trofaible. Ils dépendent de l'angle de Weinberg.Au milieu des années 70, 
es rapports avait étémesurés ave
 Gargamelle au CERN et HPWFau FNAL. Le résultat de FNAL était in
om-patible ave
 la théorie éle
trofaible. Celui duCERN l'était mais la valeur de l'angle Weinberg(sin2 θW = 0.23) n'était pas la bonne.Référen
es[1℄ F. J. Hasert et al. [Gargamelle Neutrino Col-laboration℄, Observation of Neutrino Like In-tera
tions Without Muon Or Ele
tron in theGargamelle Neutrino Experiment, Phys. Lett.B 46, 138 (1973).[2℄ F. J. Hasert et al. [Gargamelle Neutrino Col-laboration℄, Observation of Neutrino Like In-tera
tions without Muon or Ele
tron in theGargamelle Neutrino Experiment, Nu
l. Phys.B 73 (1974) 1.[3℄ D. Haidt,The dis
overy of neutral 
urrents,Eur. Phys. J. C 34 (May 2004) 25.[4℄ CERN 
ourrier spe-
ial issue 2003,http://
ern
ourier.
om/
ws/arti
le/
ern/28875[5℄ F.Halzen and A.Martin Quarks and leptons,Wiley Ed., 1984 (
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14 Fon
tions d'onde1- Dans SU(3), 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. Le dé
uplet a une fon
tion d'onde symétrique. Quel peutêtre son spin ? Comment imaginer que 
ela ne viole pas le prin
ipe de Pauli ?On a les ∆ dans le dé
uplet. Symétrique en é
hange des quarks, symétrique en spin (don
 3/2). Lafon
tion d'onde de 
ouleur est antisymétrique.2- E
rire la fon
tion d'onde spin/saveur du proton.Soit la fon
tion d'onde du proton. La fon
tion d'onde totale du proton s'obtient en 
onstruisant lafon
tion d'onde symétrique, par exemple, de la façon suivante pour le proton ave
 une proje
tion despin +1/2.

|spin〉p =

∣

∣

∣

∣

J =
1

2
, mJ = +

1

2

〉

pfon
tion d'onde de spin qui peut se réé
rire 
omme le produit de la fon
tion de spin d'une paire dequarks (uu, par exemple) et de la fon
tion d'onde de spin du quark restant (d i
i).
∣

∣

∣

∣

1

2
,+

1

2

〉

p

=

√

2

3
|1, 1〉uu

∣

∣

∣

∣

1

2
,−1

2

〉

d

− 1√
3
|1, 0〉uu

∣

∣

∣

∣

1

2
,
1

2

〉

dLes fa
teurs dans l'expression 
i-dessus sont les 
oe�
ients de Clebsh-Gordan pour le 
ouplage d'unspin 1 ave
 un spin 1/2. La fon
tion d'onde 
orre
te pour un état triplet
|1, 0〉 =

1√
2

(|↑↓〉 + |↓↑〉)la fon
tion d'onde du proton s'é
rit dans la notation saveur-spin :
∣

∣

∣

∣

1

2
,+

1

2

〉

p

=
∣

∣

∣p↑
〉

=

√

2

3

∣

∣

∣u↑u↑d↓
〉

− 1√
6

∣

∣

∣u↑u↓d↑
〉

− 1√
6

∣

∣

∣u↓u↑d↑
〉Cette fon
tion est uniquement symétrique pour l'é
hange des deux quarks u, l'expression totalementsymétrique s'obtient en ajoutant les termes dans lesquels le premier et le troisième quark et le deuxièmeet le troisième quark ont été é
hangés, soit :

∣

∣

∣p↑
〉

=
1√
18

{

2
∣

∣

∣u↑u↑d↓
〉

+ 2
∣

∣

∣u↑d↓u↑
〉

+ 2
∣

∣

∣d↓u↑u↑
〉

−
∣

∣

∣u↑u↓d↑
〉

−
∣

∣

∣
u↑d↑u↓

〉

−
∣

∣

∣
d↑u↑u↓

〉

−
∣

∣

∣
u↓u↑d↑

〉

−
∣

∣

∣
u↓d↑u↑

〉

−
∣

∣

∣
d↑u↓u↑

〉}
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3- Le 
onjugué de 
harge du doublet d'isospin (u, d) est le doublet (−d̄, ū). On 
onsidère l'asso
iationd'un quark et d'un anti-quark (meson) en se restreignant aux saveurs u, d, s. L'intera
tion forterespe
te la symétrie de saveur SU(3). Donner le 
ontenu en quarks des mesons π,K, η, η′, etpré
iser leur position dans un diagramme (Y, I3).Y=B+S, don
 pour des mésons on a Y=S. Sur le diagramme 
i-dessous on a I3 en axe horizontal.

Le 
ontenu en quark est :
K0(ds̄)K+(us̄)

π−(dū)π+(ud̄)

K−(sū)K̄0(sd̄)Pour les isospin 3 nul et hyper
harge nulle, on a :
π0 =

1√
2

(

uū− dd̄
)

η8 =
1√
6

(

uū+ dd̄− 2ss̄
)

η1 =
1√
3

(

uū+ dd̄+ ss̄
)SU(3) est brisée et on a mélange de η8 et η1 :

η = cos θη8 − sin θη1

η′ = sin θη8 + cos θη1Ave
 θ = −10.1◦, on a η ∼ η8 et η′ ∼ η115 Masses et moments magnétiques1- � Montrer que le moment magnétique du proton s'é
rit µp = 1
3 (4µu − µd), où µu et µd sont lesmoments magnétiques respe
tivement des quarks u et d.ENS - Lyon 44 M1 - Symétries et Parti
ules



La fon
tion d'onde spin-saveur du proton est donnée dans l'exer
i
e 14.2- . ~µ = q/mc~S ave
 µz =
q~/2mc. Pour les quarks on a µu = 2/3 e~/2muc, µd = −1/3 e~/2mdc et µp = 〈p ↑ |(µ1 +µ2 +µ3)z|p ↑
〉 = 2/~

∑

i

〈p ↑ |µiSiz|p ↑〉, où Siz est la proje
tion selon z du spin du i-ème quark. On trouve
µp =

1

18
(4 × (µu + µu − µd) × 3 + (µu − µu + µd) × 6)

=
1

18
(24µu − 6µd)

=
4

3
µu − 1

3
µdPour le neutron, il faut intervertir le 
ontenu en u et en d. On trouve 4/3µu-1/3µd pour le proton et4/3µd-1/3µu pour le neutron.� Dans l'approximation mu = md, donner le rapport des moments magnétiques du neutron etdu proton. La valeur expérimentale est µn

µp
= −0.68497945 ± 0.00000058

µn/µp = −2/3 = −0.6662- Dans le modèle des quarks, on peut é
rire la masse d'un méson q1q̄2 
omme égale à :
M(q1q̄2) = m1 +m2 +A

−→
S 1 ·

−→
S 2

m1m2où A = 159 × 4m2
u

~2 MeV/
2 est une 
onstante et −→S i le spin d'un quark. En utilisant les masseshabillées suivantes pour les quarks : mu = md = 308 MeV/
2 et ms = 483 MeV/
2, 
al
uler lamasse des mésons π+,K0, ρ+,K∗0, φ et 
omparer ave
 les valeurs mesurées.
−→
S 1 · −→S 2 = 1

2

(−→
S 2 −−→

S 2
1 −

−→
S 2

2

) où −→
S =

−→
S 1 +

−→
S 2. Les quarks ont un spin demi entier don
 −→

S 2
i =

1
2

(

1
2 + 1

)

~
2 = 3

4~
2. Les π+ et K0 sont des pseudos
alaires (S = 0 ⇒ −→

S 2 = 0) et ont don
 −→
S 1 ·

−→
S 2 =

−3
4~

2. Les ρ+,K∗0 et φ sont des ve
teurs (S = 1 ⇒ −→
S 2 = 1(1 + 1)~2 = 2~

2) et don
 −→
S 1 ·

−→
S 2 = 1

4~
2.On trouve :

M(π+) = 2mu + 159 × 4m2
u

~2 ×−3
4~

2 1
m2

u
= 2mu − 3 × 159 = 139MeV ∼ 140MeV

M(K0) = mu +ms − 3 × 159mu

ms
= 308 + 483 − 3 × 159308

483 = 487MeV ∼ 498MeV

M(ρ+) = 2mu + 159 = 775MeV ∼ 770MeV

M(K∗0) = mu +ms + 159mu

ms
= 892MeV ∼ 896MeV

M(φ) = 2ms + 159m2
u

m2
s

= 1031MeV ∼ 1020MeV
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M1 - ENS LyonSymétries et Parti
ulesAnnée 2012 - 2013- Semestre 2bTD 4 : Eléments de matri
es16 Le quadri-ve
teur polarisationOn 
onsidère un référentiel dans lequel le W a un quadrive
teur énergie-impulsion
kµ =

(

Ek =
∣

∣

∣

~k
∣

∣

∣

2
+M2, 0, 0, |~k|

)La polarisation peut se dé
rire par 3 quadrive
teurs de polarisation : deux dé
rivent les polarisationstransverses : ε(1)µ et ε(2)µ et le dernier ε(3)µ dé
rit la polarisation longitudinale. Ces ve
teurs s'é
riventdans le référentiel mentionné 
i-dessus :














ε
(1)
µ (~k) = (0, 1, 0, 0)

ε
(2)
µ (~k) = (0, 0, 1, 0)

ε
(3)
µ (~k) =

(

|~k|
M , 0, 0, Ek

M

)Pour obtenir l'expression des quadrive
teurs dans d'autres référentiels, il faut faire une transforma-tion de Lorentz.Ces quadrive
teurs véri�ent les relations :
ε(n)
µ εµ(m) = −δnm

3
∑

n=1

ε(n)
µ ε(n)

ν = −gµν +
kµkν

M2

ε(n)
µ kµ = 0Ces formules sont valables pour tout ve
teur massif (W , Z)17 Taux de désintégration du WLe taux de désintegration d'un boson Z ou W vers une paire de fermion anti-fermion de massenégligeable est

Γ =
1

64π2 MW

∫

dΩ |M|2,1- A partir du 
ouplage entre le W , le e et le ν̄ : −i g

2
√

2
γµ
(

1 − γ5
) et en négligeant les masses desfermions, démontrer que

|M|2 =
g2

3

(

−gµν +
qµqν

M2
W

)

[kµ
1 k

ν
2 + kν

1k
µ
2 − (k1 · k2)g

µν ] ,(k1 et k2 sont les impulsions du e et ν̄ sortant). Pour ça� vous utiliserez des identités de tra
es ave
 matri
es γ 
omme :
Tr[γµ 6p1γ

ν 6p2] = 4[pµ
1p

ν
2 + pν

1p
µ
2 − (p1 · p2)g

µν ]

Tr[γµγνγργσγ5] = 4iǫµνρσ (1)� vous utiliserez que la somme sur les polarisations du W est ∑λ ǫ
(λ)∗
µ ǫ

(λ)
ν = −gµν +

qµ qν

M2
W(q = k1 + k2 étant l'impulsion du W ).ENS - Lyon 47 M1 - Symétries et Parti
ules



Pour un W de polarisation (λ), on obtient pour un élément de matri
e :
iM = −i g

2
√

2
ǫ(λ)
µ (q)

[

ūe(k1)γ
µ(1 − γ5)vν̄e(k2)

]

|M|2 =
g2

8
ǫ(λ)
µ (q)ǫ(λ)∗

ν (q)
∑

sν̄e

∑

se

[

ūe(k1)γ
µ(1 − γ5)vν̄e(k2)

] [

ūe(k1)γ
ν(1 − γ5)vν̄e(k2)

]∗En utilisant les formules de Casimir, on obtient :
|M|2 =

g2

8
ǫ(λ)
µ (q)ǫ(λ)∗

ν (q)Tr
[

γµ(1 − γ5)(6k2 −mν̄e)γ
ν(1 − γ5)(6k1 +me)

]Et en négligeant les masses des fermions :
|M|2 =

g2

8
ǫ(λ)
µ (q)ǫ(λ)∗

ν (q)Tr
[

γµ(1 − γ5) 6k2γ
ν(1 − γ5) 6k1

]

=
g2

8
ǫ(λ)
µ (q)ǫ(λ)∗

ν (q)Tr
[

γµ2(1 − γ5) 6k2γ
ν 6k1

]

=
g2

4
ǫ(λ)
µ (q)ǫ(λ)∗

ν (q)Tr
[

(1 + γ5)γµ 6k2γ
ν 6k1

]

= g2ǫ(λ)
µ (q)ǫ(λ)∗

ν (q) [kµ
1 k

ν
2 + kν

1k
µ
2 − (k1 · k2)g

µν + iǫµρνσk2ρk1σ]Pour un W non polarisé, il faut faire la moyenne sur les 3 états possibles de polarisation :
|M|2tot =

1

3

∑

λ

g2ǫ(λ)
µ (q)ǫ(λ)∗

ν (q) [kµ
1 k

ν
2 + kν

1k
µ
2 − (k1 · k2)g

µν + iǫµρνσk2ρk1σ ]

=
g2

3

(

−gµν +
qµ qν
M2

W

)

[kµ
1 k

ν
2 + kν

1k
µ
2 − (k1 · k2)g

µν + iǫµρνσk2ρk1σ ]

=
g2

3

(

−gµν +
qµ qν
M2

W

)

[kµ
1 k

ν
2 + kν

1k
µ
2 − (k1 · k2)g

µν ]où on a utilisé le fait que la 
ontra
tion d'un tenseur symétrique ave
 un tenseur antisymétrique estnulle.2- Montrer que |M|2tot =
g2

3
M2

W

|M|2tot =
g2

3

(

−2(k1 · k2) + 4(k1 · k2) +
2(q · k1)(q · k2) − (k1 · k2)q

2

M2
W

)

=
g2

3

(

2(k1 · k2) +
2(q · k1)(q · k2) − (k1 · k2)q

2

M2
W

)Dans le C.M. du W , on a q = (MW , 0, 0, 0), k1 = MW

2 (1, 0, 0, 1) et k2 = MW

2 (1, 0, 0,−1) et don

k1 · k2 = q · k1 = q · k2 =

M2
W

2 et q2 = M2
W et le terme en 1/M2

W s'annule.
⇒ |M|2tot =

g2

3
M2

W3- Démontrer que
Γ(W → eν̄) =

g2

48π
MW .ENS - Lyon 48 M1 - Symétries et Parti
ules



(négliger les masses des fermions)
Γ = 1

64 π2 MW

∫

dΩ
g2M2

W

3 = 1
64 π2

4πg2MW

3 = g2MW

48π4- Plus généralement le vertex 
orrespondant à la désintégration d'un boson ve
teur X en deux fer-mions de spin 1
2 , f1 et f̄2 est −igX

1
2γ

µ(cV −cAγ5). Montrer que Γ(X → f1f̄2) =
g2

X

48π (c2V +c2A)MX .Dans la tra
e pré
édente, on rempla
e le 
al
ul de (1 − γ5)2 = 2(1 − γ5) par (cV − cAγ
5)2 = (c2V +

c2A) − 2cV cAγ
5 Le terme ave
 γ5 donnera une tra
e en ǫµρνσ qui s'annulera ave
 la 
ontra
tion ave
 letenseur symétrique −gµν +

qµ qν
M2

X

. On aura don
 un fa
teur de 
orre
tion de c2V + c2A
2

. Dans l'expressiondu vertex, on a gX

2
au lieu de g

2
√

2

e qui au 
arré o

asione un fa
teur 2g2

X

g2
, don
 le résultat estmodi�é par un fa
teur g2

X(c2V + c2A)

g2
. Au �nal, dans l'expression de Γ(W → eν̄), il faut rempla
er g2par g2

X(c2V + c2A) et MW par MX

⇒ Γ =
g2
X

48π
(c2V + c2A)MXBoson gX "cA", "cV "

W g√
2

1
Z g

cos θW
voir tableau 
i-
ontre Couplage au Z : fermion cA cV

νe, νµ, ντ
1
2

1
2

e−, µ−, τ− −1
2 −1

2 + 2 sin2 θWu,
,t 1
2

1
2 − 4

3 sin2 θWd,s,b −1
2 −1

2 + 2
3 sin2 θW5- 
al
uler la valeur numérique du taux de désintegration du W vers une génération de leptons, enprenant α = e2/4π = 1/128, mW = 80, 450 GeV, et g = e/ sin θW , ave
 sin2 θW = 0.232. Quesera le taux de désintegration total duW , sa
hant qu'il y a trois générations de quarks et leptons ?

ΓW→lν = e2MW

48π sin2 θW
= αMW

12 sin2 θW
= 80.45

128·12·0.232GeV = 226MeV

ΓW→ūd = ΓW→c̄s = 3ΓW→lν ⇒ ΓW = 3(ΓW→lν + 2ΓW→lν) ≃ 2GeV6- Cal
ulez les largeurs partielles Γ(Z → νeν̄e) pour une masse du Z de 90 GeV. ( gZ =
e/(sin θW cos θW ) )

ΓZ→νeν̄e = e2

48π sin2 θW cos2 θW
MZ

(

(

1
2

)2
+
(

1
2

)2
)

= e2

96π sin2 θW cos2 θW
MZ = α

24 sin2 θW (1−sin2 θW )
MZ =

164MeV7- Cal
ulez les largeurs partielles pour les désintégrations Z → e+e−, ūu, d̄d. N'oubliez pas de tenir
ompte de la 
ouleur. Prédire la largeur totale du Z dans le 
adre du modèle standard.ENS - Lyon 49 M1 - Symétries et Parti
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fermion cA cV c2A + c2V ΓZ→ff̄ (MeV)
νe, νµ, ντ

1
2

1
2

1
2 164

e−, µ−, τ− −1
2 −1

2 + 2 sin2 θW ≃ −0.03 0.25 82u,
 1
2

1
2 − 4

3 sin2 θW ≃ 0.19 0.29 95d,s,b −1
2 −1

2 + 2
3 sin2 θW ≃ −0.34 0.37 121

ΓZ = 3(ΓZ→νeν̄e + ΓZ→e+e− + 2ΓZ→ū+u + 3ΓZ→d̄+d)=2.4GeV
18 Di�usion ave
 éle
trons, positons et photons1- Donnez les diagrammes de Feynman et M pour� la di�usion éle
tron-éle
tron� la di�usion éle
tron-positon� la di�usion 
ompton.Di�usion éle
tron-éle
tron :
�γ (q)

e− (p1)

e− (p2)

e− (p3)

e− (p4)

�γ (q)

e− (p1)

e− (p2)

e− (p3)

e− (p4)

On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de gau
he :
(2π)4

∫

[

ū(s3)(p3)igγ
µu(s1)(p1)

] −igµν

q2

[

ū(s4)(p4)igγ
νu(s2)(p2)

]

× δ4(p1 − p3 − q)δ4(p2 − p4 + q)d4qOn intègre, multiplie par i, enlève un δ de 
onservation de l'impulsion-énergie totale et on obtient M.
⇒ Mgauche = − g2

(p1 − p3)2

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s4)(p4)γµu
(s2)(p2)

]Le graphe de droite est le même ave
 les éle
trons sortants inter
hangés, il va s'ajouter ave
 un 
han-gement de signe à 
elui de gau
he.
⇒ Mgauche + Mdroite = − g2

(p1 − p3)2

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s4)(p4)γµu
(s2)(p2)

]

+
g2

(p1 − p4)2

[

ū(s4)(p4)γ
µu(s1)(p1)

] [

ū(s3)(p3)γµu
(s2)(p2)

]
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Di�usion éle
tron-positon :
�γ (q)

e− (p1)

e+ (p2)

e− (p3)

e+ (p4)

�γ (q)

e− (p1)

e+ (p2)

e− (p3)

e+ (p4)

On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de gau
he :
(2π)4

∫

[

ū(s3)(p3)igγ
µu(s1)(p1)

] −igµν

q2

[

v̄(s2)(p2)igγ
νv(s4)(p4)

]

× δ4(p1 − p3 − q)δ4(p2 − p4 + q)d4qOn intègre, multiplie par i et on obtient Mgauche.
⇒ Mgauche = − g2

(p1 − p3)2

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

v̄(s2)(p2)γµv
(s4)(p4)

]On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de droite (annihilationéle
tron-positon suivie de la produ
tion d'une paire) :
(2π)4

∫

[

ū(s3)(p3)igγ
µv(s4)(p4)

] −igµν

q2

[

v̄(s2)(p2)igγ
νu(s1)(p1)

]

× δ4(p1 + p2 − q)δ4(q − p3 − p4)d
4qOn intègre, multiplie par i et on obtient Mdroite.

⇒ Mdroite = − g2

(p1 + p2)2

[

ū(s3)(p3)γ
µv(s4)(p4)

] [

v̄(s2)(p2)γµu
(s1)(p1)

]Le graphe de droite est le même que le graphe de gau
he ave
 l'éle
tron sortant é
hangé ave
 le positonentrant. Il va s'ajouter ave
 un 
hangement de signe à 
elui de gau
he.
⇒ Mgauche + Mdroite = − g2

(p1 − p3)2

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

v̄(s2)(p2)γµv
(s4)(p4)

]

+
g2

(p1 + p2)2

[

ū(s3)(p3)γ
µv(s4)(p4)

] [

v̄(s2)(p2)γµu
(s1)(p1)

]
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Di�usion Compton :
�e− (q)

e− (p1)

γ (p2)

γ (p3)

e− (p4)

�e− (q)

e− (p1)

γ (p2)

γ (p3)

e− (p4)

On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de gau
he :
(2π)4

∫

ǫ(s2)
µ

[

ū(s4)(p4)igγ
µ i(6q +mc)

(q2 −m2c2)
igγνu(s1)(p1)

]

ǫ∗(s3)
ν × δ4(p1 − p3 − q)δ4(p2 − p4 + q)d4qOn intègre, multiplie par i et on obtient Mgauche.

⇒ Mgauche =
g2

(p1 − p3)2 −m2c2

[

ū(s4)(p4) 6ǫ(s2)
µ (6p1− 6p3 +mc) 6ǫ∗(s3)

ν u(s1)(p1)
]On utilise les règles de Feynman pour 
al
uler l'élément de matri
e du graphe de droite :

⇒ Mdroite =
g2

(p1 + p2)2 −m2c2

[

ū(s4)(p4) 6ǫ(s3)
µ (6p1+ 6p2 +mc) 6ǫ∗(s2)

ν u(s1)(p1)
]Le graphe de droite n'est pas le même que le graphe de gau
he à un é
hange près. Il va s'ajouter à
elui de gau
he.M = Mgauche + Mdroite2- On 
onsidère la di�usion éle
tron-éle
tron, 
al
uler l'amplitude au 
arré de 
ha
un des 2 graphes.Le terme de gau
he 
ontribue au 
arré 
omme :

|Mgauche|2 =
g4

(p1 − p3)4
1

4

∑

s1

∑

s2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s3)(p3)γ
νu(s1)(p1)

]∗

[

ū(s4)(p4)γµu
(s2)(p2)

] [

ū(s4)(p4)γνu
(s2)(p2)

]∗En utilisant les formules de Casimir :
⇒ |Mgauche|2 =

g4

4(p1 − p3)4
Tr (γµ 6p1γ

ν 6p3) Tr (γµ 6p2γν 6p4)

⇒ |Mgauche|2 =
4g4

(p1 − p3)4
[pµ

1p
ν
3 − gµν(p1 · p3) + pµ

3p
ν
1 ] [p2µp4ν − gµν(p2 · p4) + p4µp2ν ]

⇒ |Mgauche|2 =
8g4

(p1 − p3)4
[(p1 · p2)(p3 · p4) + (p1 · p4)(p3 · p2)]

⇒ |Mgauche|2 =
2g4

(p1 · p3)2
[(p1 · p2)(p3 · p4) + (p1 · p4)(p3 · p2)] où on a utilisé le fait que (p1 − p3)

2 =

p2
1 + p2

3 − 2p1 · p3 = −2p1 · p3 en négligeant les masses.Le terme de droite s'obtient en é
hangeant p3 et p4.
|Mdroite|2 =

2g4

(p1 · p4)2
[(p1 · p2)(p3 · p4) + (p1 · p3)(p4 · p2)]3- Dans les formules de Casimir, intervient Γ = γ0Γ†γ0, montrer que :� [ūaΓub] =

[

ūbΓua

]∗� Γ = Γ� γµγτγν = γνγτγµENS - Lyon 52 M1 - Symétries et Parti
ules



� [ūaΓub] = [ūaΓub]
†∗ =

[

u†aγ
0Γub

]†∗
=
[

u†bΓγ
0ua

]∗
=
[

u†bγ
0γ0Γγ0ua

]∗
=
[

ūbΓua

]∗� Γ = γ0Γ
†
γ0 = γ0

(

γ0Γ†γ0
)†
γ0 = γ0γ0†Γγ0†γ0 = Γ

γµγτγν = γ0 (γµγτγν)† γ0 = γ0γν†γτ†γµ†γ0

= γ0γν†γ0γ0γτ†γ0γ0γµ†γ0

= γνγτγµ

4- Cal
uler le terme d'interféren
e entre les 2 graphes.
MgaucheM∗

droite =
−g4

4(p1 − p3)2(p1 − p4)2

∑

s1

∑

s2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s4)(p4)γµu
(s2)(p2)

]

[

ū(s4)(p4)γ
νu(s1)(p1)

]∗ [
ū(s3)(p3)γνu

(s2)(p2)
]∗

MgaucheM∗
droite =

−g4

4(p1 − p3)2(p1 − p4)2

∑

s1

∑

s2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µu(s1)(p1)

] [

ū(s4)(p4)γµu
(s2)(p2)

]

[

ū(s1)(p1)γ
νu(s4)(p4)

] [

ū(s2)(p2)γνu
(s3)(p3)

]

⇒ MgaucheM∗
droite =

−g4

4(p1 − p3)2(p1 − p4)2

∑

s3

∑

s4

ū(s3)(p3)γ
µ

(

∑

s1

u(s1)(p1)

)

γνu(s4)(p4)

ū(s4)(p4)γµ

(

∑

s2

u(s2)(p2)ū
(s2)(p2)

)

γνu
(s3)(p3)

⇒ MgaucheM∗
droite =

−g4

4(p1 − p3)2(p1 − p4)2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µ 6p1γ

νu(s4)(p4)
] [

ū(s4)(p4)γµ 6p2γνu
(s3)(p3)

]

⇒ MgaucheM∗
droite =

−g4

4(p1 − p3)2(p1 − p4)2

∑

s3

∑

s4

[

ū(s3)(p3)γ
µ 6p1γ

νu(s4)(p4)
] [

ū(s3)(p3)γµ 6p2γνu
(s4)(p4)

]∗En utilisant les formules de Casimir :
⇒ MgaucheM∗

droite =
−g4

4(p1 − p3)2(p1 − p4)2
Tr (γµ 6p1γ

ν 6p4γµ 6p2γν 6p3)On utilise les propriétés suivantes des matri
es γ : γµγνγλγσγµ = −2γσγλγν et γµγνγλγµ = 4gνλ,pour 
al
uler :
γµ 6p1γ

ν 6p4γµ 6p2γν 6p3 = p1σp4λp2αp3βγ
µγσγνγλγµγ

αγνγ
β

= −2p1σp4λp2αp3βγ
λγνγσγαγνγ

β

= −8p1σp4λp2αp3βγ
λgσαγβ

⇒ MgaucheM∗
droite =

2g4

(p1 − p3)2(p1 − p4)2
(p1 · p2)Tr ( 6p4 6p3)

⇒ MgaucheM∗
droite =

8g4

(p1 − p3)2(p1 − p4)2
(p1 · p2)(p3 · p4) =

2g4

(p1 · p3)(p1 · p4)
(p1 · p2)(p3 · p4)Pour des parti
ules de masse nulle p1+p2 = p3+p4 implique p1 ·p2 = p3 ·p4,p1 ·p3 = p2 ·p4,p1 ·p4 = p2 ·p3

⇒ MgaucheM∗
droite =

2g4

(p1 · p3)(p1 · p4)
(p1 · p2)

2
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5- Montrez que pour la di�usion éle
tron-éle
tron à haute énergie (me négligeable), on a
|M2| = 2g4|(p1 · p2)

4 + (p1 · p4)
4 + (p1 · p3)

4

(p1 · p3)2(p1 · p4)2
|

⇒ |M2| = |Mgauche|2 + |Mdroite|2 − 2MgaucheM∗
droite

⇒ |M2| = 2g4|(p1 · p2)
2 + (p1 · p4)

2

(p1 · p3)2
+

(p1 · p2)
2 + (p1 · p3)

2

(p1 · p4)2
+

2(p1 · p2)
2

(p1 · p3)(p1 · p4)
|

⇒ |M2| = 2g4|(p1 · p2)
2 [(p1 · p4) + (p1 · p3)]

2 + (p1 · p4)
4 + (p1 · p3)

4

(p1 · p3)2(p1 · p4)2
|Or (p1 · p4) + (p1 · p3) = p1 · (p4 + p3) = p1 · (p1 + p2) = p2

1 + p1 · p2 = p1 · p2

⇒ |M2| = 2g4 (p1 · p2)
4 + (p1 · p4)

4 + (p1 · p3)
4

(p1 · p3)2(p1 · p4)2
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M1 - ENS LyonSymétries et Parti
ulesAnnée 2012 - 2013- Semestre 2bTD 5 : Révisions
19 QED et la réalité du nombre quantique de 
ouleurL'intérêt de la produ
tion en mode e+e− est parti
ulier dans le sens où la mesure du rapport
R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(voir �gure 12) permet tester l'hypothèse de la 
ouleur, dans un pro
essusde QED ordinaire.

�γ

e−

e+

f̄

f

Fig. 11 � Produ
tion d'une pairefermion anti-fermion (seul graphesauf pour f=e)
L'amplitude du graphe de la �gure 11 fait intervenir des termes en
M ∝ [v̄e(ieγ

µ)ue]
−igµν

q2 [ūf (iqfeγ
ν)vf ], de telle sorte que la se
tione�
a
e pour 
haque paire de fermion-antifermion est σff̄ ∝ |M|2,de telle sorte que, si on néglige les e�ets d'espa
e de phase, le rap-port :

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
≃
∑

f

q2f .En-dessous du seuil de produ
tion du 
harme, on s'attend à R =
2 ·
(−1

3

)2
+
(

2
3

)2
= 2

3 si le seul nombre quantique di�érent aunumérateur et au dénominateur est la saveur des quarks. Si il ya en plus le degré de liberté de 
ouleur, on s'attend à 
e que
R = 2. Au-dessus du seuil du 
 et avant 
elui du b on s'attendà R = 2

[

·
(−1

3

)2
+
(

2
3

)2
]

= 10
9 sans 
ouleur ou 10

3 = 3.33 ave
 la
ouleur. C'est bien 
e qu'on observe sur la �gure 12, à peu de 
hoses près... (Quelles approximationsa-t-on faites ?)Les masses des quarks sont di�érentes, mais surtout les quarks ne sont pas des fermions libres quiobéissent à l'équation de Dira
. Ce sont des parti
ules virtuelles qui vont interagir à nouveau : hadro-nisation, formation d'un état lié.1- Nous allons maintenant 
al
uler la se
tion e�
a
e du pro
essus dé
rit par la �gure 11. Donnerl'amplitude M de 
e diagramme en supposant que les fermions en sortie ne sont pas des éle
trons.
(2π)8

∫

[v̄e(ieγ
µ)ue]

−igµν

q2
[ūf (iqfeγ

ν)vf ] δ4(pf + pf̄ − q)δ4(q − pe− − pe+)
d4q

(2π)4

= i(2π)4 [v̄e(eγ
µ)ue] [ūf (qfeγ

ν)vf ]
gµν

(pe− + pe+)2
δ4(pf + pf̄ − pe− − pe+)

⇒ M = − [v̄e(eγ
µ)ue] [ūf (qfeγ

ν)vf ]
gµν

(pe− + pe+)22- En utilisant les formules de Casimir, montrer que :ENS - Lyon 55 M1 - Symétries et Parti
ules



Fig. 12 �
〈

|M|2
〉

=
8q2fe

4

(pe− + pe+)4
(

(pe− · pf )(pe+ · pf̄ ) + (pe− · pf̄ )(pe+ · pf ) −m2
e(pf · pf̄ ) −m2

f (pe− · pe+) + 2m2
em

2
f

)On rappelle que
Tr[γµ 6p1γ

ν 6p2] = 4[pµ
1p

ν
2 + pν

1p
µ
2 − (p1 · p2)g

µν ] (2)
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〈

|M|2
〉

=
1

4

∑

s
e+

,s
e−

,sf ,sf̄

|M|2

=
1

4

q2fe
4

(pe− + pe+)4

∑

se+ ,se− ,sf ,sf̄

[v̄eγ
µue−] [ūfγµvf ] [v̄eγ

νue−]∗ [ūfγνvf ]∗

=
1

4

q2fe
4

(pe− + pe+)4
Tr (γµ(6pe− +me−)γν(6pe+ −me+)) Tr

(

γµ(6pf −mf )γν(6pf̄ +mf )
)et

Tr (γµ(6pe− +me−)γν(6pe+ −me+)) = Tr (γµ 6pe−γ
ν 6pe+) −m2

eTr (γµγν)

= 4
[

pµ
e−
pν

e+ + pν
e−p

µ
e+ − (pe− · pe+)gµν

]

− 4m2
eg

µνEt don
 :
〈

|M|2
〉

=
4q2fe

4

(pe− + pe+)4
[

pµ
e−
pν

e+ + pν
e−p

µ
e+ − (pe− · pe+ −m2

e)g
µν
] [

pf,µpf̄ ,ν + pf,νpf̄ ,µ − (pf · pf̄ −m2
f )gµν

]

=
4q2fe

4

(pe− + pe+)4
(

2(pe− · pf )(pe+ · pf̄ ) + 2(pe− · pf̄ )(pe+ · pf ) − 2(pf · pf̄ )
(

(pe− · pe+) −m2
e

)

− 2(pe− · pe+)
(

(pf · pf̄ ) −m2
f

)

+ 4(pf · pf̄ )(pe− · pe+) − 4m2
e(pf · pf̄ ) − 4m2

f (pe− · pe+) + 4m2
em

2
f

)

=
8q2fe

4

(pe− + pe+)4
(

(pe− · pf )(pe+ · pf̄ ) + (pe− · pf̄ )(pe+ · pf ) −m2
e(pf · pf̄ ) −m2

f (pe− · pe+) + 2m2
em

2
f

)

3- Donner les quadri-ve
teurs énergie-impulsion de 
ha
une des parti
ules d'entrée et de sortie dansle référentiel du 
entre de masse de la 
ollision. On notera E l'énergie de l'éle
tron in
ident, Efl'énergie du fermion sortant et θ l'angle entre la dire
tion du fermion sortant et la dire
tion del'éle
tron in
ident.
pe− = (E, pe, 0, 0)

pe+ = (E,−pe, 0, 0)

pf = (Ef , pf cos θ, pf sin θ, 0)

pf̄ = (Ef ,−pf cos θ,−pf sin θ, 0)

4- exprimer 〈|M|2
〉 en fon
tion des énergies et impulsions dans le 
entre de masse.

ENS - Lyon 57 M1 - Symétries et Parti
ules



〈

|M|2
〉

=
8q2fe

4

16E4
A =

q2fe
4

2E4
Aave


A = (EEf − pepf cos θ)2 + (EEf + pepf cos θ)2 −m2
e(E

2
f + p2

f ) −m2
f (E2 + p2

e) + 2m2
em

2
f

= 2E2E2
f + 2p2

ep
2
f cos2 θ −m2

e(2p
2
f +m2

f ) −m2
f (2p2

e +m2
e) + 2m2

em
2
f

= 2E2E2
f + 2p2

ep
2
f cos2 θ − 2m2

ep
2
f − 2m2

fp
2
esoit :

〈

|M|2
〉

= =
q2fe

4

E4

(

E2E2
f + p2

ep
2
f cos2 θ −m2

ep
2
f −m2

fp
2
e

)

5- La se
tion e�
a
e du pro
essus s'é
rit :
dσ =

〈

|M|2
〉

4
√

(pe− · pe+)2 −m4
e

d6Φ2où d6Φ2 est l'espa
e de phase à 2 parti
ules :
d6Φ2(q = pe− + pe+; pf , pf̄ ) = (2π)4 δ4

(

pe− + pe+ − pf − pf̄

) d3~pf

(2π)3 2Ef

d3~pf̄

(2π)3 2Ef̄Cal
uler σ(e+e− → f f̄)

(pe− · pe+)2 −m4
e =

(

E2 + p2
e

)2 −m4
e =

(

2E2 −m2
e

)2 −m4
e = 4E4 − 4E2m2

e = 4E2p2
ed'où :

dσ =

〈

|M|2
〉

8Epe
d6Φ2

=

〈

|M|2
〉

32 (2π)2EE2
fpe

δ4
(

pe− + pe+ − pf − pf̄

)

d3~pfd
3~pf̄

=

〈

|M|2
〉

128π2EE2
fpe

δ
(

Ee− +Ee+ − Ef − Ef̄

)

p2
fdpfdΩ

=

〈

|M|2
〉

128π2EE2
fpe

δ (2E − 2Ef ) p2
fdpfdΩ

=

〈

|M|2
〉

256π2EE2
fpe

δ (E − Ef ) p2
fdpfdΩ
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On a Ef =
√

p2
f +m2

f don
 E2
f = p2

f +m2
f et EfdEf = pfdpf , d'o`u :

dσ =

〈

|M|2
〉

256π2EE2
fpe

δ (E − Ef ) pfEfdEfdΩ

=

〈

|M|2
〉

256π2E2pe
pfdΩ

=

〈

|M|2
〉

256π2E2
√

E2 −m2
e

√

E2 −m2
fdΩ

=
q2fe

4

256π2E6

√

E2 −m2
f

E2 −m2
e

(

E4 + p2
ep

2
f cos2 θ −m2

ep
2
f −m2

fp
2
e

)

dΩOn a ∫ dΩ = 4π et ∫ cos2 θdΩ = 2π
∫

π
2
−π
2

cos2 θd(cos θ) = 2π
∫ 1
−1 u

2du = 4π
3 et don
 :

σ =
q2fe

4

256π2E6

√

E2 −m2
f

E2 −m2
e

4π

(

E4 +
p2

ep
2
f

3
−m2

ep
2
f −m2

fp
2
e

)

=
q2fe

4

64πE6

√

E2 −m2
f

E2 −m2
e

1

3

(

3E4 + (E2 −m2
e)(E

2 −m2
f ) − 3m2

e(E
2 −m2

f ) − 3m2
f (E2 −m2

e)
)

=
q2fe

4

192πE6

√

E2 −m2
f

E2 −m2
e

(

3E4 + E4 − E2m2
e − E2m2

f +m2
em

2
f − 3m2

eE
2 + 3m2

em
2
f − 3m2

fE
2 + 3m2

fm
2
e

)

=
q2fe

4

192πE6

√

E2 −m2
f

E2 −m2
e

(

4E4 − 4m2
eE

2 − 4m2
fE

2 + 7m2
em

2
f

)

6- En déduire Rq =
σ(e+e− → qq̄)

σ(e+e− → µµ̄)

Rq = q2f

√

E2 −m2
q

E2 −m2
µ

4E4 − 4E2(m2
e +m2

q) + 7m2
em

2
q

4E4 − 4E2(m2
e +m2

µ) + 7m2
em

2
µ7- Montrer que si on néglige la masse de l'éle
tron, Rq = q2f

(

pq

pµ

)3 où pq (resp. pµ) est l'impulsiondu quark (resp. du muon) d'énergie E.
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Rq = q2f

√

E2 −m2
q

E2 −m2
µ

4E4 − 4E2m2
q

4E4 − 4E2m2
µ

= q2f

√

E2 −m2
q

E2 −m2
µ

E2 −m2
q

E2 −m2
µ

= q2f

(

E2 −m2
q

E2 −m2
µ

) 3

2

= q2f

(

pq

pµ

)3

8- Que vaut Rq si on néglige toutes les masses ?
Rq = q2f9- Montrer que si on néglige la masse de l'éle
tron, la se
tion e�
a
e σ(e+e− → f f̄) est égale à
q2fe

4

48πE2
β3

foù βf est le rapport v
c pour le fermion sortant.En négligeant la masse de l'éle
tron :

σ =
q2fe

4

192πE7

√

E2 −m2
f (4E4 − 4E2m2

f )

=
q2fe

4

48πE5

√

E2 −m2
f (E2 −m2

f )

=
q2fe

4

48πE5
p3

f

=
q2fe

4

48πE2
β3

f

10- Donner l'expression de 
ette se
tion e�
a
e si on néglige aussi la masse du fermion f .
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En négligeant toutes les masses, βf ∼ 1 et :
σ =

q2fe
4

48πE2
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