M1 - ENS Lyon
Symeétries et Particules
Année 2011 - 2012- Semestre 2b
TD 1 : Ordres de grandeurs et symétries

1 Ordres de grandeur

1- — Quelle distance parcourt une particule ultrarelativiste en 1 ns?

1=3.108%10"2 = 0.3m

— Quelle durée met une particule de masse nulle pour traverser un proton ?

taille d’un proton d = 1fm = 10~%m donc t = %01_0185 = 3.10"%s

2- Le muon a un temps de vie de 2,2 - 10~%s. De nombreux muons sont produits lors d’interaction
dans la haute atmosphere de particules cosmiques énergétiques. Pourquoi peut-on les détecter au
sol 7 Peut-on envisager de fabriquer un collisionneur & muons, et quels en seraient les avantages
et les inconvénients ?

Energie typique des muons cosmiques 1 & 10 GeV = v = E/m = 10 GeV/100 MeV = 100 = § =
V1 —=1/9%=10.9999 On peut considérer que les particules se déplacent a la vitesse de la lumiére. Leur
trajet 1=Bver = 100 x 3 - 10% x 2.2 - 1076 = 66km bien plus grand que I'épaisseur de I’atmosphére
(méme avec Tkm pour 1 GeV, une grande partie arrive jusqu’a nous). Un collisionneur & muons est donc
possible, mais il faut produire, focaliser le faisceau et ’accélérer sans trop perdre par désintégration
mais cela permettrait de dépasser la limite en énergie due a la radiation synchrotron des collisionneurs
ete™ car cette perte est proportionnelle a m?, toute en gardant une particule non composite comme
projectile.

3- Comparer les temps de vie des divers mésons suivants, déduire la nature des forces a 'oeuvre, et
proposer un shéma de désintegration :
— " ( contenu en quarks ud ) M = 140MeV, ¢ = 7,8m

ENS - Lyon 1 M1 - Symeétries et Particules



Le temps de vie du 77 est 2,6 1078s. 1 s’agit d’un temps relativement long. La désintégration se fait

par interaction faible : d Y

W+

u +

0
Notez que le 7 est trop lourd (1.7 GeV/c?) et que le spin du pion valant 0, et le neutrino de spin 1/2 et
de masse nulle dans le modéle standard est donc d’hélicité gauche. Il faut donc un anti-lepton gauche.
Or les interactions faibles violant la parité, une particule de spin 1/2 est gauche, une anti-particule
de spin 1/2 est droite. Les leptons chargés sont massifs donc peuvent avoir une composante de l'autre

hélicité et d’autant plus que le masse est grande .

— 70 ( quarks (vt — dd)//2 ) M = 135MeV, 7 = 8,4 x 10~ 17s

Désintégration rapide : électromagnétique.

— ¢ (etat lié s§ ) M =1,02GeV, ' = 4,4MeV. On signale que M+ = 494MeV .

7 = h/T = 6.5810722 /4.4 = 1.51072?%s. 1l s’agit donc d’une désintégration forte. ¢ — K+ + K~ (La
désintégration en 3 pions semble plus favorable cinématiquement mais nécessite des gluons suffisam-
ment durs pour créer des paires ¢g. De tels gluons ne couplent que trés faiblement. Typiquement un
graphe de Feynman que l'on peut couper en ne coupant que les lignes de gluons est supprimé pour
cette raison (regle de OZI du noms des 3 physiciens qui ’ont remarqueé ))

¢ —> K"+ K~ ¢ — a7t
S S S U
d
v d
i d
s s s u

— J/Y (état lie c¢ ) M = 3,1GeV, T' = 90keV. On signale que Mpo = 1,9GeV.

Le temps de vie est long on a une désintgration faible. En effet : J/v) — DT + D~ impossible & cause
de la masse des D, la désintégration en 3 Kaons est supprimée par OZI ) il reste donc la désintégration
faible en 2 leptons ou deux quarks.

4- Ecrire le carré de la charge de I’electron en unit’e sans dimension.
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a = e%/dneghc = 1/137

2 Groupes SU(2) et SU(3)

1- On considére la matrice U(0, @) = e~ % 2aua%a/2 oy o; sont les matrices de Pauli et @, un vecteur

0

unitaire. Montrer que U (0, @) = cos 5 iU - &' sin 3

[Uay Ub] =2 Zc €abcOc = 0q0p — Op0gq
{Ua7 Jb} = 20ap1 = 0q0p + 0404

1 .
= 040y = 5 ([Uaa Ub] + {Uaa Ub}) = Z 1€qbcOc + 5ab-[

:>(C_L'5")(l_);5:): (Zaim) ij()’j :Zzaib]’O’in

-, -,

=@ D) +i(@xb) &

= (Ei &)(5 5) = ZZaibj [Zieijkak + 5@]
7 k

7

= (@ 3P =al=a
= (i-3)* :of N 2 N -
e o (i G2)" N (—ifi G /2)™ (—i0ii - 5/2)*"
¢ ,; ! ,; ol " nz:% @n+ 1)
e’} n n [ee} n 2n+1
—wasz _ N~ DO/ o~ (EDT0/27
e 7;) oL an:% @yl 7

= ¢ 0U9/2 — c05(0/2) — it - &sin(0/2)

2- Montrer que dans SU(2),2®2® 2 = 4@ 2 @ 2, et exprimer les états du produit tensoriel en
fonction des états de la somme directe des représentations irréductibles. On précisera la symétrie
des états correspondants aux représentations irréductibles.

On combine deux représentations irréductibles de SU(2), dont le module de représentation est donné
par les vecteurs propres des opérateurs Ji2 et J,, dans chacune des deux représentations notés |jimq)
et |jamsa) avec j;(j; + 1) et m; les valeurs propres correspondantes pour J? et J,,. Le produit direct de
deux représentations irréductibles de SU(2) admet un module de représentation donné par les vecteurs
propres des opérateurs J2 et .J, dont les j(j + 1) valeurs propres possibles correspondent aux valeurs
de j allant de |j1 — jo| & j1 + j2- Pour chaque valeur de j, il y a 25 4 1 vecteurs propres de valeur propre
m de J, allant de —j & +.

Dans le cas de deux représentations de dimension 2, que l'on peut associer & la combinaison de deux
spins %, on obtient les valeurs de j=1,0 avec m’ = —1,0,1 pour 7/ = 1 (un triplet) et m’ = 0 pour
j’=0 (un état singlet). On a donc 2® 2 = 3@ 1. On y combine un 3¢ spin % En le combinant avec

7" =1, on obtient j = %, % avec respectivement 4 vecteurs propres de .J, pour j = %, de valeurs propres
m = —%, —%, %, %, et 2 vecteurs propres de J, pour j = %, de valeurs propres m = —%, %
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3¢ spin % avec j = 0, on obtient un deuxiéme doublet de vecteurs propres avec

les valeurs propres j = % et m = 2, 2 On retrouve bien une somme directe d’une représentation de
dimension 4 et de 2 représentations de dimension 2.

On consulte les tables de coefficients de Clebsch-Gordan pour exprimer les fonctions d’ondes associées.
On construit d’abord la fonction d’onde associée a deux spins %

555 50 =11D

En combinant le

(I10) +100))

—=([10) =100))

\— —>|1 1) —\—— 1))
2 1.1
|——|1 |—— |——
3'22 3'22
|1 1 1| \F|
%%
Z3No0)y=1=2

5 -5 —n=15 -2

5 300 =I5 —£(0)

SR ENEET

\5 §>|§ §>| §> = 55(1»

Dl DI 3= os0d hro il Doy = 22—\ E o+ Bk o

[
[
—_

535 ~35 50 = 7505 5 0 =I5 50 0) = Z=I55 () - NI 0
11,1 1 1 1 1 2.1 1

535 — 35 — 3= §|; —5M) =y/3l5 =5

1 1,1 11 131 211

5 =35 35 5= \/;55(1» - \/;55( )

5-33 35 3" = 55 5 o>+|§—§>|oo>> SEE —i( M35 —5 O+ 515 ~50)
% —%igl—;% %1> - 1i2<|§1—§>|11 013 —3) 0o = /5153 \f\— ~5)==l5 ~5(0)
|§ —§>|§ —§>|§ —§>:|§ —§>|1 -1)= 5 —5(

Les états du quadruplet sont symétriques. |33(1)),[22(1)),[3 — 2(1)),|3 — 3(1)

Les états du doublet correspondant & j’=1 sont mixed-symétriques : [33(1)), |3 — (1))

Les états du doublet correspondant a j’=0 sont mixed-antisymétriques : \%%(O», \% — %(O)>
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3- On veut déterminer les constantes de structures de SU(3), c’est a dire les fup. tels que
[Aa/2, Ab/2] = ifapeAc/2. Ou les A; sont les matrices de Gell-Mann génératrices de SU(3).

010 0 —i O 1 0 0 0 01
M= 1 0 0 Ay = i 0 0 A= 0 -1 0 M= 0 0 0
0 0 0 0O 0 O 0 0 0 1 00
00 —i 0 0 0 0 0 O 1 10 0
M= 0 0 0 =10 0 1 M= 0 0 —¢ d=—=1| 01 0
i 0 0 010 0 72 0 V3 00 -2
— Combien y a-t-il de constantes fup. 7
8 X 8x 8 =512

— Montrer que les matrices de Gell-Mann obéissent a la normalisation tr(A;\;) = 20;;, ou §;; est
le symbole de Konecker.

Produit de matrices C;; = Z A By

k
Trace = somme des éléments diagonaux, pour un produit : ZC’ii = Z ZAikBki : commutatif en
i ik
AB.
Les matrices de Gell-Mann sont soit symétriques A;; = Aj; soit antisymétriques A;; = —Aj;.

Les matrices symétriques sont A1, A3, Ag, A\g et Ag, les matrices antisymétriques sont g, A5 et A7.
La trace du produit d’'une matrice symétrique par une matrice antisymétrique est nulle.
La trace du produit de 2 matrices symétriques vaut ZZAikBik et correspond a la somme des

i k
produits des éléments de matrices. Parmi A1, A3, Ag, A\g et Ag, seules A3 et A\g ont des éléments de
matrice non nuls au mémes endroit et

Tr(Ashs) = o5 — 5 =0

La trace du produit de 2 matrices antisymétriques vaut — Z ZAikBik et correspond & 'opposé de
ik
la somme des produits des éléments de matrices. Les 3 matrices Ao, A5 et A7 ont leurs éléments de

matrices non nuls & des positions différentes.
Donc Tr(AA;) =0sii#j

Il nous reste a calculer Tr(A;\;). Les matrices A1, A3, Ay, Ag et Ag sont symeétriques et leurs éléments
sont rééls. Donc Tr(A?) =Y, 5", A%

Les matrices A1, A3, A4 et A\g ont tous leurs éléments non nuls sauf deux qui valent 1 et donc leur trace
vaut 12412 =2

Tr(A\3) = 3(12+124+2%) = 3(14+1+4) =2

Les matrices Ao, A5 et Ay sont antisymétriques et leurs éléments sont imaginaires purs. Donc
Tr(X) = - 2 2k Azzk =222k |Aik|2-

Leurs éléments sont tous nuls sauf deux dont le module vaut 1 donc leur trace vaut 12 + 12 = 2

On a donc bien TI‘()\Z)\]) = 2(51]
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—1
— En déduire que fupe = ZTr()\c[)\a, X)) et que fupe est totalement antisymétrique.

L. . 1 —1
Par définition : [\,/2, \y/2] =i Ec: fabeAe/2 = 5 Ec: SfabeAe = T [Aas Ap]
1 —1
= 5&2 Jabere = —Ad oy Mo
1 —1
= gTr (Z JabeAdAc ) = Tr(Ad [Aa, Mo])

=3 Z fabc )\d)\ = _ZZTY ()‘d [)‘m )\b])

= 5 Z fachédc = —TI‘ ()\d [)\CH )\b])

= fabd = ZTT()\d [Aas Ap))

Pour prouver que fqpq est totalement antisymétrique, on utilise les propriétés suivantes des traces et
des commutateurs :

[AB,C]| = A[B,C]+[A,C]| B

[A,BC|=B[A,C|+ [A,B]|C =[AB,C|+ [CA, B]

Tr(AB) = Tr(BA) et donc la trace d'un commutateur est toujours nulle.

Si on permute a et b, le commutateur ghange de signe. On a bien favd = — frad- '
Si on permute b et d, faa = FTr MMy Ad]) = FTr (e, Al ) = FTr([Aa, AaXs]) +
1Tt (Aa [Aa, Ao]) = — faba . . ,
Si on permute a et d, fae = FTr(Aa[Aa, X)) = FTr([Aa, ] Aa) = FTr([Aade, X)) +

LTr (Mg [Aay Ab)) = = faba

— Calculer les fape -

fi2z =1
Jass = fers = @
f1a7 = fies = foas = fas7 = faus = far6 = 3

3 Isospin
1- On note ph et pa les opérateurs de création et d’annihilation d'un proton dans I'état |a). On

note nh, et ng les opérateurs de création et d’annihilation d’un neutron dans l'état |a). Ces

opérateurs vérifient les relations d’anticommutations {pa, pg} = papg —l—pgpa = 0af, {pl‘, pg} =

0, {pa,ps} = 0 et des relations similaires pour nlé et nq. Les opérateurs concernant un proton
anticommutent avec ceux concernant un neutron.
— Donner I'expression de 'opérateur 7T} échangeant un neutron par un proton.

Ty = Z pjxna
«
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— Donner I'expression de 'opérateur 17— échangeant un proton par un neutron.

T_ = Z nlpa
e

— Calculer T3 = [T, T_].

T3 = [Ty,T]
— T+T_ - T_T+

= DD phnanips =YY nhpavfms

a g a g
= o3 (Phtranhps — nlpapns)

a g
- (5 a—nl S T

p&(0ap — ngna)ps — ng(dap — PgPa)ng

a g
= > ) (pLéaﬁpﬁ — plnfnaps — nldapms + pEﬂLﬂgm)
a

= 3 b (plpﬁ - nlnﬁ)
« 5
= > (pra - nL%)

«

— Calculer [T3,T4] et [T3,T_]

ENS - Lyon 7 M1 - Symeétries et Particules



.i.

[p&pas Psns
[ngnm pEnﬁ =

[T37T+] =

_'.

Z Z Phpasplinsl —

)

i ¥ T

= PLPaPsNB — PNEPLPa

Ty pl ot

= DLPaPEN3 — PpPaPans

£ ol Pt

= P4PaPpns + P&PsPans

= pl, {pa,pg} ng
= 5o¢ﬁp£nﬁ

n napﬁng pgngnT Ne

napﬁng + pEnT ngna —

n
n' ne n —i—nT i
ﬁ B aPghahtp —

T

i
(3
i
(3
i
(3
nin — i

I8 apﬁng ngNaPgng —

~BagPla

pgaaﬁna
pgaaﬁna
pE(S BN«

Z Z n na,pﬁng

Z Z 5aﬁpanﬁ + Z Z 5aﬁpﬁna
a B a g
23 phna
«

2T,
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TT]_TT Tt

[p&pa:nppgl = PLPanEDs — NEPEPAPa
= plpanfps + npipspe — nfaspa
= phpanfps + phnlpaps — nlaspa
= phpanfps — phpanfps — nlbaspa
= —dagn;pa
[njlna, ngpg] = ngnangpﬁ — ngpgnT Ny
= nLnangpﬁ —n! népgna
= nLnan;pﬁ + ngngnapg
= ol {nanl} pa
= Sapntpp

75, 7] = Zzpapmnﬁpﬂ ZZ P m5ps]
= - Z PILEDEDD Z Sy
a g a g
= -2 Z ana
«a

= —27_

1 1 1
— Quelle est 'algebre engendrée par les opérateurs t4 = —=T,t_ = —=T1_,t3 = =T
Q g g p p += G At =gl
1
[t+7t—] = §[T+7T—] ST =13
11 11
ts, ty]| = =——=|[13,T ——=2T, =t
[37 +] 2\/5[ 3 +] 2\/5 + +
11 11
ts, t_| = =———=|[13,T ——(=2)T_ = —t_
1) = 55007 = 5752

C’est I’algeébre SU(2) de l'isospin.

2- Le proton et le neutron sont des états d’isospin I = 1/2 Les A des états d’isospin I = 3/2, de
masse M = 1,232GeV, et les pions, des états d’isospin I = 1.
— Comparer les amplitudes des processus
Tt +p—at+p
T +p—n +p
T +p— 7% +n
en fonction de 'amplitude des processus idéaux Mgy et My /o
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On a trouvé en Rl2Z=]1a combinaison de 3 spins :%, ici on a 3 isospins %, ce qui donne la méme chose.
Plus précisément, on a une combinaison du pion (isospin j=1, m==-1,0,1) avec un proton (isospin
j=1/2 m=+1/2) ou un neutron (isospin j=1/2 m—-1/2)
p-+ 7" correspond & [§ $)[1 1) =|33)

_ . 3 1 211 _ 1
p+m correspond & [ $)[1 —1) = /3|3 —1)— /31 - 3)
n+ w0 corresponda\% —%Hl 0) = 3|% % %

Puisque l'intéraction forte conserve l'isospin, <2m\M\ sm) =0
On a Msjs = (3m|M|3m) et My /o = (3m|M]|3m) donc :

(mF + pIM|Tt +p) = M3

(™ + pIMr™ +p) = Msgjo + E M)

(7 + pIMIr® + ) = R My — My o

— dans le cas on I'énergie dans le centre de masse vaut 1,232GeV (voir les données expérimentales

de la Figure [l montrer que
Otot(m" +p) _

Ttot (T + D)
oot (T +p) (7 + pIM|7t +p)?
otot (7™ +p) |(m= + pIM|m— +p>|2|+ (70 + n|M|r= + p)[?
3/2
9|M3/2 + 2M ;2| + Z[ M0 — My o2
9|M3/2|
T 3[Mpl?

Le A est connu de 1=3/2, donc M35 >> M5 pour Ecp=1,232 GeV.
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9r=\110 )%= z'

Matrices de Pauli

; ) (
UZ'Uj:&'j—I-Z'ZEiijk, (Ei & b =a-

k

1
0 _
b+id - (a@x

b)

Ql

—

g;.f =o0;=o0; ", ¢%7 =cosf +i(0.5)sin 0
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Symmetries

e AR T S P S e S SN i I ey
190 |- (1232) o
180 |- =
170 |- A
160 |- s
150 |- =
140 |- =
130 —
120 |- 4

110 —

0, ., (mb)
3
o

(1688) T P

B!
“T ’ (1920)

(2180)

e

B iz | i L T LS { 1
900 1100 1300 1500 1700 1900 2100 2300 2501

Mass of 7 p system (MeV/c?)

F1G. 1 - Section efficace totale mesurée de diffusion pion sur proton [I] en fonction de la masse invariante
du systéme.
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32. Clebsch-Gordan coefficients 1
32. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
AND d FUNCTIONS
. J J
Note: A square-root sign is to be understood over every coefficient, e.g., for —8/15 read —/8/15. Notation:| , .
[ ] m m
1/2x1/2 |} f—— N E - b
— /= cos 5/2 .
[fi2+12] 1] o o ! At 2x1/22 e 5, my  my | Coefficients
|+1/2 -1/21/2 1/2| 1 3 el iz s
~1/2 +1/2|1/2-1/2)1 vl =~ = sin g e'® +2 -1/2|1/5 4/5| 5/2 372
|-1/2-1/2] 1 g +1 +1/2|4/5 —1/5 |+1/2 +1/2
5 /3 1 +1-1/2| 2/5 3/5| 5/2 3/2
Y9 =,/—(Zcos20—= _ 1
v 2 1= \2 B 0+1/2| 3/5-2/5]-1/2 -1/2
1x1/2 3o 32 12 5 . | 0-1/2| 3/5 2/5| 5/2 3/2
[+ +172]  1frr/2+1/2 vi=— /8_ sin 0 cos § ¢i® -1 +1/2| 2/5 =3/5|-3/2 -3/2
T 2 -1-1/2| 4/5 1/5] 5/2
+1-1/2| 1/3 2/3] 3/2 1/2 3/2%x1/2 |
0+1/2| 2/3-1/3|-1/2-1/2 1 /15 » / /2 ko7 3 -2 +1/2| 1/5 =4/5]-5/2
y2 = 2 /22 Gn2 g 20 [+3/2 +1/2] 1]+1 +1 [-2-12 1
0-1/2| 2/3 1/3] 3/2 2 7 4V or
1 +1/2| 1/3-2/3}-3/2 +3/2-1/21/4 3/4) 2 1
ox1[3 I > N +1/2 +1/2|3/4-1/4] O 0
+3[ 3 2 3/2x1 +2§§ Ey— +1/2-1/21/2 12| 2 1
[+2 +1] 1] +2 +2 [zl i+3/2 +3/2 -1/2+1/2|1/2-1/2] -1 -1
+2 0|1/3 2/3 32 1 +3/2 0| 2/5 3/5| s/2 3/2 1/2 -1/2-1/2|3/4 1/4] 2
+1 +112/3-1/3] +1  +1 41 +1/2 +1| 3/5 —2/5|+1/2 +1/2 +1/2 —3/2 +1/2]1/4-3/4]-2
+2-1|1/15 1/3  3/5 +3/2-1|1/10 2/5 1/2 |-3/2-1/2] 1
1x1 E +1 ols/15 1/6-3/10| 3 2 1 +1/2 0| 3/5 1/15 -1/3| 5/2  3/2 172
|_+2 2 1 0+1|6/15 -1/2 1/10| o0 0 0 -1/2+1(3/10 -8/15 1/6|-1/2 -1/2 -1/2
FLAL] L]+ 41 +1-1[1/5 1/2 3/10 +1/2 —1[3/10 8/15 1/6
+1 ofi/2 12 2 1 o 0 o0|3/s 0 -2/5 3 2 1 -1/2 0| 3/5 -1/15 -1/3| 5/2 3/2
o+1i/2-1/2] o o o —1+1|1/5 ~1/2 3/10] -1 -1 -1 -3/2 +1|1/10 -2/5 1/2|-3/2 -3/2
+1-1{1/6 1/2 1/3 0-1l6/15 1/2 1/10 |—1/2—1 3/5 2/5| s/2
0 0|2/3 0-1/3] 2 1 -1 o0f8/15 -1/6-3/10| 3 2 —3/2 0] 2/5 -3/5]-5/2
-1 +1|1/6 -1/2 1/3] -1 -1 -2 +1|1/15 -1/3 3/5| -2 -2 |,3/2 1] 1
o o-11/2 172 2 -1-1|2/3 1/3] 3 — —
Y, = (D)"Y |- ohiyz-12]-2 - —2 o|1/3-2/3)-3 (j1jomims|j1jaJ M)
™ o 12 = IR .
ol al = T Yre ™ Lol = (—1)7 717 22(jajimama |j2j1 J M)
J _ (_1ym—-m/ ] — ] 3/2X3/2 3 1/2 1+ cos@
dm’,m - ( 1) dm,m’ —m,—m/ / / +3] 3 2 d(%O = cosf d1§2 1/2 = COS — di 1=
l+3/2 +3/2] 1]+2  +2 ’ ) 2 ? 2
2X3/2 | 1/2 1/2 . sin 0
A Y e e g al ey ale=
[+2+3/2]  1ps/2+5/2 ’ 2 V2
2-1/2 [1/5 1/2 3/1
+2+1/2| 3/7 a/1| 772 572 372 Bl B e g1 . _ L—cosd
+1+3/2| 4/7=-3/7W3/2 +3/2 +3/2 —1/2+3/2 |1/5 =1/2 3/10 0 0 0 0 ‘1,-1 — 2
+2-1/21 1/7 16/35 2/5 +3/2 —3/2 [1/20 1/4 9/20 1/4
- +1 1/2| a/7 1/35-2/5] /2 s/2 32 172 12 _1/2 920 1/a-1/20-17a
2x2 | 0 3/2| 2/7-18/35 1/5] +1/2 +1/2 +1/2 +1/2 F105 2175 [ov0 ~17a 1720 1453 -
2]+ +3 +2-3/2| 1/35 6/35 2/5 2/5 —3/2 +3/2 |1/20 =174 9/20-1/a] -1 -1 1
+1-1/2|12/35 5/14 0 =3/10 12 3/2| 1/5 1/2 3/10
+2411/2 1721 4 32 0 1/2(18/35 -3/35 -1/5 1/s| 1/2 s/2 3/2 12| | 11515 35 0 —25[ 3 2
Hl42jl/2-1/2)+2 42 42 -1 3/2| 4/35-27/70 2/5 —1/10]-1/2 -1/2-1/2 -1/2 _3/2+1/2| 1/5-1/2 3/10| -2 -2
+2 0(3/14 1/2 2/7 +1 -3/2| 4/35 27/70 2/5 1/10 2 -
+1 1) 4/7  0-3/7 4 3 2 L 0 -1/218/35 3/35-1/5 -1/5 7;;2 j;g %gi;i j
0 2|3/14-1/2 2/7] +1 +1 41 +1 -1 1/2[12/35 —5/14 0 3/10) 772 572 3/2
2 11/14 3/10 3/7 1/5 -2 3/2|1/35-6/35 2/5 —2/5)-3/2 -3/2-3/2 F3/2-3/2] 1
+1 0| 3/7 1/5-1/14-3/10 0 —3/2| 2/7 18/35 1/5
0 1| 3/7 -1/5-1/14 3/10 a 3 2 10 “1 —1/2| a7 “1/35-2/5] 772 s/2
-1 2 |1/14-3/10 3/7 -1/5 0 0 0 0o 0 o 15| 1716735 8| 52 sy
+2 -2 | 1/70 1/10 2/7 2/5 1/5 -1-3/2| a/7 37| 772
+1 -1 | 8/35 2/51/14-1/10 -1/5 —2-1/2 3/7 —as7k7/2
0 0 [18/35 0 -2/7 0 1/5
-1 1| 8/35 -2/5 1/14 1/10 -1/5| 4 3 2 1 -2-3/2| 1
a2 1+ cosd cosg -2 2| 1/70-1/10 2/7 -2/5 1/5] -1 -1 -1 -1
3/2,3/2 2 2 +1 -2|1/14 3/10 3/7 1/5
1+ cosfy2 0 -1| 3/7 1/5-1/14-3/10
d3/? zfﬂmsing d§2:(7> -1 0| 3/7 -1/5-1/14 3/10| & 3 2
3/2,1/2 2 2 ’ 2 -2 1|1/14-3/10 3/7 -1/5| —2 -2 -2
32 _ plocosf 0 o LtcosO 0 —2[3/14 1/2 2/
dyyp 12 = V3 5 %3 21 -1 -1|4/7 o-3/7] 4 3
. -2 0]3/14-1/2 2/7] -3 -3
a2 o Lcosd ng d3 :—Gsin20 d%.1:1+;059(2“)5971) -1 -2|1/2 1/2] 4
3/2,—3/2 ) D) 2,0 4 |—2 -1|1/2-1/2]-4
3/2 3cosf —1 0 9 1—cosf . 42 = 3 . = 2| :
— "7 cos— - 7 = —4/= sinf cosf
d1/2,1/2 5 cos 5 d3 né 1,0 3
3/2 _ 3cosf+1 2 5 _ 1—cosf\2 5 *1—(‘050 o _ (3 2 1
d1/2,—1/27_f 3 d2‘727 (T) dl,—l*T(QCOSQ"'l) do,o* (5 cos 9—5)

Figure 32.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley ( The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.
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M1 - ENS Lyon
Symétries et Particules
Année 2011 - 2012- Semestre 2b
TD 2 : Modéle des quarks et symétries C,P,T

4 Fonctions d’onde

1- Dans SU(3),3®3®3 =10®8@ 8@ 1. Le décuplet a une fonction d’onde symétrique. Quel peut
étre son spin 7 Comment imaginer que cela ne viole pas le principe de Pauli?

On a les A dans le décuplet. Symétrique en échange des quarks, symétrique en spin (donc 3/2). La
fonction d’onde de couleur est antisymétrique.

2- Ecrire la fonction d’onde spin/saveur du proton.

Soit la fonction d’onde du proton. La fonction d’onde totale du proton s’obtient en construisant la
fonction d’onde symétrique, par exemple, de la fagon suivante pour le proton avec une projection de
spin +1/2.

. 1 1
|spin),, = ‘J =5 M= —I—§>p

fonction d’onde de spin qui peut se réécrire comme le produit de la fonction de spin d’une paire de
quarks (uu, par exemple) et de la fonction d’onde de spin du quark restant (d ici).

11 \/5 1 1> 1 1 1>
_)+_ = Y 171 a' Ao - T = 1)0 a9 a

Les facteurs dans I'expression ci-dessus sont les coefficients de Clebsh-Gordan pour le couplage d’un
spin 1 avec un spin 1/2. La fonction d’onde correcte pour un état triplet

1
V2

la fonction d’onde du proton s’écrit dans la notation saveur-spin :

‘%, —I—%>p = ‘pT> = \/g ‘uTqul> — % ‘uTuldT> — % ‘ulquT>

Cette fonction est uniquement symétrique pour I’échange des deux quarks u, ’expression totalement
symétrique s’obtient en ajoutant les termes dans lesquels le premier et le troisiéme quark et le deuxieme
et le troisiéme quark ont été échangés, soit :

‘pT> = \/Ll_S {2 ‘uTqul> +2 ‘quluT> +2 ‘dluTuT> — ‘uTuldT>

_ ‘quTui> _ ‘dTuTul> _ ‘ulquT> _ ‘u1d1u1> _ ‘dTuluT>}

11,00 = —=(ITH) + [11)
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3- Le conjugué de charge du doublet d’isospin (u, d) est le doublet (—d, @). On considére I'association
d’un quark et d'un anti-quark (meson) en se restreignant aux saveurs u,d, s. L'interaction forte
respecte la symétrie de saveur SU(3). Donner le contenu en quarks des mesons m, K, 7,17, et les

préciser leur position dans un diagramme (Y, I3).

Y=B-+S, donc pour des mésons on a Y=S. Sur le diagramme ci-dessous on a I3 en axe horizontal.

KO K*

S=0 ——— T

Le contenu en quark est :

K~ (su)K°(sd

~—

Pour les isospin 3 nul et hypercharge nulle, on a :

7 Z% (utt — dd)
78 :% (uﬂ +dd — 285)
m :% (vt + dd + s5)

SU(3) est brisée et on a mélange de ng et 7 :

7 = cos Ong — sin O
1/ = sin Ong + cos Oy

Avec § = —10.1°, on a n ~ ng et n/ ~

5 Masses et moments magnétiques

1- — Montrer que le moment magnétique du proton s’écrit p, = %(4/@ — [d), O fiy, et fiq sont les

moments magnétiques respectivement des quarks u et d.

ENS - Lyon 14
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La fonction d’onde spin-saveur du proton est donnée dans Dexercice HIB=1 i = q/mcS avec p, =
qh/2me. Pour les quarks on a p,, = 2/3 eh/2myc, p1g = —1/3 eh/2mgc et p, = (p T |(1 +p2+p3):(p 1
) = 2/712(]9 T |1iSizlp T), ot S;. est la projection selon z du spin du i-éme quark. On trouve

7

1
p = g (4 (u+ pu — 1) X 3+ (pru — jru + pia) x 6)
1
= — (24, —
4 1
= 3,Ufu 3Md

Pour le neutron, il faut intervertir le contenu en u et en d. On trouve 4/3p,-1/3ug pour le proton et
4/3p4-1/3p,, pour le neutron.

— Dans 'approximation m, = mg, donner le rapport des moments magnétiques du neutron et

du proton. La valeur expérimentale est % = —0.68497945 £ 0.00000058
P

[in/ iy = —2/3 = —0.666

2- Dans le modeéle des quarks, on peut écrire la masse d’un méson g;g> comme égale 4 :

- =
Si1- 59

M(qiq2) =m1+mg+ A
mimes

2 —
on A =159 x 47;;“ MeV /c? est une constante et S; le spin d’'un quark. En utilisant les masses
habillées suivantes pour les quarks : m, = mg = 308 MeV/c? et m, = 483 MeV /c?, calculer la
masse des mésons 7+, K9 pt, K*9 ¢ et comparer avec les valeurs mesurées.

1 —>2_—>2_—>2 \—>_—> — . . . —>2_
1-S2=35|(5S Si—S5)ou S = 51+ Sa. Les quarks ont un spin demi entier donc 57 =
% (% + 1) h? = %hQ. Les 7 et K° sont des pseudoscalaires (S = 0 = 52 = 0) et ont donc ?1 : ?2 =

— 312, Les pt, K*0 et d — 1= 52— 2 — op? S5, = 1n2
1h*. pT, et ¢ sont des vecteurs (S = 1= 5= 1(1+1)h° = 2h%) et donc S - Sy = A%
On trouve :

M(rt) = 2m, +159 x 25 x — 3521 = 2m, —3 x 159 = 139MeV  ~ 140MeV
M(K®) = my, +m, —3 x 159 = 308 + 483 — 3 x 150328 — 487McV  ~ 498MeV
M(pt) = 2m, + 159 = T75MeV ~ TT0MeV
M(K*%) = My 4 ms + 1592 = 892M eV ~ 896 MeV
M(¢) = 2mg + 159™% = 1031 MeV ~ 1020MeV
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6 Symétries C, P et T

1- Préciser le moment orbital et le spin des mesons 70 (JP¢ = 07%), p° (JPC = 177) et a4
(JPC = 1++).

Pour les mésons P = (—1)F*1 donne la parité de L et C' = (—1)+L donne celle de L+S. Donc on a :

Particule | L+ S | L | S
7Y pair | 0|0
pO impair | 0 | 1
aq pair |11

2- Le n se désintégre principalement en n — 2v(39%), n — 3w (56%),n — wny(5%). Pourquoi
le mode en 27 est-il interdit 7 Pouvez-vous expliquer pourquoi le mode en 37 a un rapport
d’embranchement comparable au mode en 27

La parité G = C' - Ry ou Ry correspond & une rotation de 180° autour de ’axe 2 d’isospin. Cela
correspond & transformer I3 en -I3. En général la valeur propre de G est pour les mésons (—1)5+5+],
Les interactions fortes conservent la parité G. Le n a L=0, S=0 et J©¢ = 0~F et I=0. Le 7 est un état
propre de G de valeur propre +1. Le pion est un triplet d’isospin, mais a les mémes autres nombres
quantiques. Le 7 est un état propre de G de parité -1.

Parité de 2r=+1 et la parité de I'n est -1. Comme L et S=0 pour le 7, pas possible de construire une
état de L=1 qui donne J=0. Impossible par interaction électromagnétique et forte.

Parité de 37—-1, mais G = (—1)% = —1 alors qu’elle vaut +1 pour 1 donc pas OK pour les interactions
fortes. : seules les interactions électromagnétiques sont permises.

C(2y) = (-1)2 =1 Ok P, = —1 mais P(27) * (—1)F=-1, avec L=1 est possible car S, = 1, donc on
peut avoir J=0 avec L=1 et S=1, la désintégration électromagnétique est possible.

7 Symétrie CP

1- En étudiant la désintégration du muon (= — e~ 7.1,) et en vous rappelant qu'’il n’existe que
des neutrinos d’hélicité gauche et des anti-neutrinos d’hélicité droite, montrez que si P et C' sont
brisées par l'interaction faible, la combinaison C'P est, a priori, conservée.

Si on applique C a cette réaction, on transforme les neutrinos d’hélicité gauche en anti-neutrinos
de méme hélicité ce qui est impossible. De méme, ’application de P conserve la charge mais inverse
I’hélicité ce qui est également impossible. Par contre, ’application de C'P va donner les bonnes hélicités.

2- Les kaons neutres produits par interaction forte ne sont pas états propres de la combinaison de
symétries discretes C'P. On poseﬂ que C|K%) = |K"), et on rappelle que les kaons neutres ont
une parité intrinséque négative.

a) Définissez les états propres de CP, KY et K9, a partir des états propres de l'interaction

'En fait, c’est une convention. On peut aussi poser : C|K°) = —|K°), mais alors il faut changer les définitions de K?
et K qui en découlent.
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forte K9 et K°, en choisissant comme convention :

CP|KY) = +|K)) et CP|KY) = —|K9).

On a =
CP|K®) = —|K")

puisque les kaons neutres ont une parité négative. On peut poser
|K%) = cos 0| KY) + sin 0| K9) et |[K°) = —sin 0| K?) + cos 0] K3)
puisqu’on passe d’une base orthonormeée & une autre par une rotation. En appliquant C’P, on obtient :
CP|K°) = cos 0CP|KY) + sin 0CP|KY) = cos 0| KY) —sin | KY) = —|K°) = sin 0| K?Y) — cos 0| K9).
Cette relation est vérifiee par § = 7/4 (mod 7) soit

K% = —(|K) + [KD)) et |KO) =

: (1K) + |K9)

Sl

b) Quelles sont les désintégrations possibles des kaons neutres? A quels états propres de cpP
correspondent-elles 7

Les kaons neutres se désintégrent principalement en 7° + 7° ou en 7+ + 7. Ecrivons la conservation
du moment cinétique dans ces désintégrations. On a :

— —

Jg =Jn+ T +lpg = 0=0+0+lrr
soit l_;mr = 0. La parité de ces états est donnée par celle du moment angulaire donc ces états sont pairs.
De plus, ils sont états propres de C' avec la valeur propre +1 (mg + m) ou (—1)! = +1 (7, + 7). IIs
sont donc états propres de CP avec la valeur propre +1.

Les modes de désintégration a trois pions sont eux états propres de C P avec la valeur propre -1. Si on
conserve C’P, K? peut donc se désintégrer en 27 ce qui n’est pas le cas de KJ.

c¢) Pourquoi associe-t-on K9 & K9 et K2 a K7 ? Comment se manifeste la brisure de CP et en
quoi cela affecte-t-il la définition des états K% et K g ?

La désintégration en 37 est beaucoup plus longue que la désintégration en 27. La durée de vie de K3
est donc beaucoup plus grande que celle de K ? ce qui explique l'identification de ces particules a Kg
et Kg. La brisure de C'P se traduit par la possibilité de K% de se désintégrer en 27w. On peut donc
écrire

[K7) ~ |K3) + e| K7)

a un (petit) facteur de normalisation pres.
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M1 - ENS Lyon
Symétries et Particules
Année 2011 - 2012- Semestre 2b
TD 3 : Interaction Faible

Rappels matrices gamma

Les matrices v sont des matrices 4 x 4

0 _ _ I2 0 R 0 o;
7’ =iy
¥ _ T 0
{0 7
i
ot =2 (7" =7"")
d=a"
Propriétés :
2 5\ 2
() 2 (V) =-1 (72214.m_0u0 _
; ; YT =Y (ke =10,1,2,3)
T ,}/ZT = ,}/5 _ ,}/5
Quelques relations :
Yy =4 ;o A =0
VYT Ayt =291 ;oAb ¥4 =2a-b
YAV =29 oMy =24
YA Y =g DA =dab
VAPV = =29 5 A d Yt =240 4

Traces des matrices gamma : la trace du produit d’'un nombre impaire de matrices v est nulle.

On a Tr(y*) = 0; Tr(y°) = 0; Tr(Iy) = 4.

Tr(v“’y ) =49 ; Tr(d §) =4a-b
Tr(y* 9" y™7) =4 [g" g — g"g"7 + g7 g :
Tr(d bffd) =4[(a-b)(c-d) = (a-c)(b-d)+ (a-d)(b-c)]
(77“7) =0 ; Te(y* 4 ) =
Tr(yo 41y M) = 4ighvAo  Tr(Y A P ¢ d) = 4ie" aub,end
Relations avec les spineurs :
u = quyO v = vayO
(¥ —mc)u=0 (P +mec)v =
u(p — mc)—O v(p+ me) =
uu = 2mc ﬁv = —2mc
D=ty u®a®) =g+ me 3, RV $)5() = — me
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Formules de Casimir :
Z [ﬂarlub] [ﬂargub]* =Tr [Fl(ﬁb + mbc)f‘g(]éa + mac)]

Sping,Spinyg,

Z [@al“lub] [@al“gub]* =Tr [Fl(ﬁb + mbc)f‘g(]éa — mac)]

Sping,Spinyg,

Z [ﬂarlvb] [ﬂaFQUb]* =Tr [Fl(ﬁb — mbc)f‘g(]éa + mac)]

Sping,Spinyg,

Z [0aT10p) [UaT20p]" = Tr [Ty (# — mpc) T2 (Ba — mac)]

Sping,Spinyg,

ou I'; et T’y sont des matrices 4 x 4 et o I'; = fyOFZTfyO

8 Taux de désintégration du muon

Un muon d’impulsion ¢ se désintégre en e.v, par l'interaction faible. Le ;1 en se transformant en
v, (d’impulsion py) par emission d’'un W~ virtuel ( = hors-couche, 'énergie PJ, et 'impulsion P du
W sont telle que (P°)? — |15'|2 < m¥,). Le W se désintégre rapidement en e, d’impulsions p et ps.
On veut calculer le taux de désintegration du p. On va négliger les masses des fermions dans l’état
final, on travaille dans le réferentiel du j, et on néglige P? par rapport m%,[, dans le propagateur du W.

1- Dessiner le diagramme de Feynman.

Vp

2- Ecrivez I'élément de matrice M(pu — evev,), en négligeant I'impulsion du W, c’est a dire, on
utilise 'approximation d’ interaction de contact entre quatre fermions gauches. Vous obtenez
M(p — every,) de M(n — pe~v,) (du cours).

M(p — every,) = % [T0,77 (1 = ¥ )uy] [Gevo (1 —~%)vy, ]

3- Démontrer une des formules de Casimir.
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Je considére la formule :
A= Z [aaflvb] [@argvb]*

SPing,spiny
Puisque les éléments entre crochets sont des nombres complexes (matrice 1 x 1), on peut écrire :

[t Tavp]" = [ﬂaPQUb]T

et donc

[t Tovp]" = [ul’yofgvbr
= ’UZF;’}/OTUG
= vgfgfyoua
= uj7*7 T u,
= vpl2u,

d’ou,

A= Z [aal“lvb] [@bfgua]

SPina,SPiny

= Z Ug'1 Z VpUp fgua

sping, spinyg,
= E U1 (Bp — mpc)Laug
sping,

En utilisant le fait que les spineurs sont & 4 composantes et que Q = I'1(#, — mpc)['2 est une matrice
4x4 ona:

4
A= Z Z Ui Qijlaj

sping ©,J=1

4
= E ZQz‘juaﬂai

sping ©,7=1

4

= Z Qij Z UqUq

i,7=1 Sping i
Le passage de la premiére a la deuxiéme ligne ci-dessus est possible car les composantes sont de simples
nombres et que le produit des nombres est commutatif. A la troisiéme ligne, on considére la matrice
4 x 4 dont I'élément ji est donné par des produits de la composante j de u, par la composante ¢ de
Uq- On profite du fait qu’on a 2 sommes sur les indices des matrices 4 X 4 et spineurs pour passer du
produit de matrice 1 x 4 x4 x 4 %4 x 1 a une trace d'un produit de matrice 4 x 4 * 4 x 4.

4
A= Z Qij [Pa + macly;
ij=1

= Tr[Q(?‘a + mac)]

= Tr[L1 (g — muc)Ta(Pa + mqc)]
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4- Mettez ’élément de matrice au carré pour un muon non polarisé.

Pour un muon non polarisé, on doit faire la moyenne sur les 2 états de polarisation du muon (facteur
1/2). On doit aussi faire la somme sur tous les états finals de polarisation (sans faire la moyenne).
D’ou,

1 N B B
IM|? = 3 Z M* (1 — evev, ) M(pn — every,)

all spins
G2 * *
= =53 [w,70 =9 [, (0 = 77w [@re (L = 77)en] [@era(d = 77)os.]
all spins
2
- %TI‘ [70(1 - 75)(%1 + muc)/ya(l - 75) ﬁl/u] Tr [70(1 - 75) 751/5706(1 - 75) ﬂe]

oll on a utilisé :

e — T

(1 =77) =" [y (1 =]
=721 = 7"T)y1y°
— ,YO,yaT,YO _ ,YO,YST,yaT,YO

— ,Yoz _ 7075,}/(11‘70

= 7%+ 7770710
— ,Yoz + 75704
=7 =%y
=71 -7

Le terme en m, correspond a la trace du produit d'un nombre impair de matrice gamma. Sa trace est
donc nulle. Il reste a calculer les traces :

Te [47(1 = %) By (1 =) Bu) = Pusbin, e [17(1 = 7717 P9%(1 = %)

Tr [17(1 = 47" (1 = )7 =T [y (1 = 4%)(1 = ")’y
= 2Tr |57 (1 = 7717’y
= 2Tr [(1+77)777 77"

—8 (gaégan o gaagén + gangéa + igaéan)
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Donc,

Tr[y7(1=7°) #*(1—7°) By,] =8 (piupff + 0 P0 — (D, - )9 + ie"‘sa“pwp%)

0123 _

De méme (en se rappelant que € —€0123)

Tr [70(1 - 75) ﬁuefya(l - '}/5) ﬁe] =38 (pegpuea + PeaPre, — (pue : pe)gm - iEaﬁangep;)

Ne sont non nuls que les termes correspondant & la contraction de 2 tenseurs symétriques ou de 2
tenseurs antisymétriques. Les produits symétriques donnent :

64 [2(py,, - Pe) (D Pve) + 2P, - Pu) (D De) — 4(Duy, - D) P~ Pe) + 4Duy, - D) P - e)]
En utilisant Eg‘sa”“egﬁm = Em‘;”‘sm@T = 2(5%5? — (5%5), les produits antisymétriques donnent :
64 [2 ((pz/M ‘pe)(pu “Pr.) — (puu 'pve)(pu 'pe))]

et donc :

M|? = G_%64 4 . .
M= [4(py,, - pe)(p - Pve)]

= 64G%(pyu : pe)(pp : pVe)

5- L’espace de phase & n particules en sortie est donné par ’expression :

n n
d?’ﬁ'cg
D, (q; 1,2, -5 0n) = 200 = b e
n( 1, P2 n) ( ) Zz:; i ];11:(27T)32EZ

ou p; = (E;, cp;) est le quadrivecteur d’une particule sortante et ¢ est le quadrivecteur de l'état

d3pe3
initial. On rappelle que pour une particule de masse m, /d4p5 (p2 — m204) = 2]9E . La largeur
de désintégration du muon en unité naturelle (¢ = 1,4 = 1) dans son référentiel est donnée par
_ |M|?
dl'(p — evevy,) = %d@g,

Toutes les particules de I’état final ont une masse nulle. On a :

_ IM[? 44 d*ps d3ps d3p
AT (1 — eDov,) = 2m)46% (¢ — p1 — p2 —
(h = evevy) om,, [TV OGP = p) S T | OF, (208 28 (27)°
|M |2 4 ¢4 d4p3 2 d3ﬁ2 dgﬁl
= A 0m) 6t (g — p1 — pa — p3) 223 5(p2)2
o, |20 @ pr =2 =) 02T | o s O (o
IM]? E1dE1dQy EydEydQ,

= o, (2m)5 ((¢ — p1 — p2)?) 2(27)3 2(27)3

Il est utile de définir x; = 2E;/m,,. Vérifier que dans ce cas

M‘S
=

pi-pj = —=-(1—xy)

pour i # j # k.
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1 1 m;, PEDu | PR, M By,
pi-pj = 5(102' +p)° —p; —pj = 5(2% —m)’ = (1 —QWH + m—k) = 7”(1 —Zm—)
1 It I

Dans le reférentiel ot le muon est au repos p, = (m,, 6) donc py - pu = Exmy,
On néglige les masses des particules sortantes donc p? = p? = pi =m?=0
La conservation de I'énergie-impulsion implique p, = p1 + p2 + p3

6- Expliquer pourquoi z; doit étre compris entre 0 et 1.

L’énergie minimale d'un produit de sortie est nulle. L’énergie maximale disponible est la masse du
muon mais la conservation de I'impulsion implique qu’une seule particule ne peut en emporter qu’au
plus la moitié.

7- Montrer que \MP ne dépend pas des directions des particules finales dans le référentiel propre
du muon.

|M|? est proportionnel a (Pv, * Pe) (P - Pre) €6 Py = P, + Pe + Dy, - Dans le référentiel propre du muon,
Py Pve = myu by, et

(P, +pe)* = m2 +2py, - pe

= 2py, " De

= (pp —p0.)’

= m’, = 2py - Pu.
2
b myE,,

ot on a négligé la masse de I'électron. On en déduit que que p,, - pe =

mi m
5 PePe= g

et donc :
|M|2 = 646%(171/# “Pe) Py * Pue)
m2
= 64G% 7’* —m,E,. | m,E,

™ _p,)

— 64GEm2E,, ( :

ne dépend d’aucun angle.

8- On peut faire les intégrales sur les angles de dI'(n — erer,,) en utilisant la fonction § restante.
La direction de p est libre (peut servir pour définir I'axe des z), donc [ dQy — 4m. On définit
cos By tel que pi - po = E1 5 cos by, donc

2 4m) (2
dl'(p — evevy,) = |2/\:1L (5(mi(1 —(x1+22) + %(1 — cos 92))%EldElEnggdcos 02

M2 1 2

= ——— F1dE 1 EydEy———
2my, 2(2m)3 1 2mix1m2
M2 1 \M|*m,,

= dEydEy = S g g
2m,, 4(2m)3 12 T 3g(a)s ML
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9- Montrer que 1 —z1 <29 <1< 2 — 2.

0=(q—p1—p2)?
= mi — 2muE1 — 277’LHE2 + 2p1 - po
:mi(l—xl—zg—i-(l—mg)

= mi(2 — T — T9 — X3)
Donc, x1 + 2 + x3 = 2 et chaque x; doit étre entre 0 et 1. Donc,

0<zr3<1

1<2—23<2

1<z +22<2
-1 <290<2—1

Comme 0 <21 <1,2—21 > 1.

10- Montrer que |M|? = 16G%~mix1(1 — x1). Préciser quelle particule est la particule 1.

En prenant pour particule 1, le 7., on a d’aprés la question précédente :

|./\/l|2 = 64G%miE1 (ﬂ — El)

2
1 /m m
= 64G%mimua:1§ (7“ — 7“381)

= 16G%mﬁx1(1 — 1)

11- Obtenez
G%m5

19273
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12- Quelle est son temps de vie en secondes?

1 1927% % 6.58212 107 2°GeV s
~(0,105GeV)? x (1.166 10-5GeV ~2)2

= 2.2 1079 5 (il faut réintroduire % pour les unités)
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9 Production et régéneration des mésons K neutres.

Les mésons les plus légers sont les mésons 7 et K, de masse m, ~ 140MeV/c? et my ~ 500MeV/c2.
Les baryons les plus légers sont les nucléons, le A et les X, de masse my ~ 940MeV/c? |, my ~
1115MeV/c? et my ~ 1190MeV/c?. On rappelle les étrangetés de ces particules :

S(A) =85 =5E)=85E")=-1
S(K% = S(KT) =+1
S(K% =S(K™)=-1

1- Quels sont les couples particule/anti-particule ?

Les couples particule/anti-particule sont (K°, K°) et (K+, K~). Attention, les ©* ont tous les deux
des étrangetés de -1 et ne sont pas anti-particules I'un de ’autre.

2- Ecrire les réactions de production des mésons K+ et K° a partir d’un faisceau de pions. Ecrire
les réactions de production des mésons K~ et des K.

On considére les différentes réactions permettant de produire des K. On va montrer que les réactions
faisant intervenir des KT permettent de ne faire intervenir qu’une seule particule supplémentaire
alors que deux particules sont nécessaires pour la création des K—, KY.

Réaction CZ—>Of BZ'—>Bf EZ'—>Ef CX BX EX
T 4+p—-K'+X -141—-0+Cx O0+1—0+Bx 0+0—+1+Ex 0 +1 -1
T 4+p—-K+X —-1+41—-4+14+X 0+1—-0+Bx 0+0—1+X -1 +1 -1
7T_—|—p—>f(0—|—X -1+41—-0+Cx 0+1—-0+Bxy 0+0—-—-1+FEx 0 +1 +1
T +p—K +X -1+1—-1+Cx 0+1—-0+Bx 0+0—-1+X +1 +1 +1

Quelles sont les particules avec une étrangeté de —1? On a 79 A. Pour la premiére réaction, on peut
produire un A ou un X% qui ont tous les deux une charge nulle et un nombre baryonique de +1. Pour
la seconde réaction, on peut produire un ¥~ qui a la bonne charge et le bon nombre baryonique.
Qu’en est-il pour les deux derniéres équations? On doit produire une particule d’étrangeté +1 c’est a
dire K% ou 3. Cependant ces particules n’assurent pas la conservation du nombre baryonique et ne
peuvent donc étre produites seules.

3- On veut produire des mésons K+ ou K° en bombardant de la matiére par un faisceau de 7.
Quelle énergie doit on choisir si on veut éviter de produire aussi des K~ et des K.
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Comme démontré & la question précédente, les réactions que I'on peut considérer sont

T +p — KO+ A T 4+p — Kt4x-
T 4+p - K'4+K'+n 1 4p — Kt+K +n

Les réactions indiquées sur la premiére ligne fournissent des particules dont la masse est plus faible que
celles produites dans les réactions de la seconde ligne. Ainsi, ces réactions possédent une énergie seuil
plus faible. Si on utilise des pions avec une énergie intermédiaire, on ne peut produire que des K™ et
des KO et pas des K~ et des K.

Calculons les énergies des réactions de créations de deux et trois particules. On utilise la masse inva-
riante entre le référentiel du laboratoire avant la réaction et le référentiel du centre de masse aprés la
réaction. On a don

2
- () (2
= (T —I—mﬂ—l-mp) —p2
(T —I—mw—l—mp) — Tn(Ty + 2my)
(i +my)? + 2T,

alors que
2
My = (m)
pour I’énergie correspondant & I’énergie seuil. Dans le cas de la réaction 7~ +p — KT + X7, on trouve

(mg +ms)? = (mg +my)? _ (500 +1190)* — (140 + 940)°
2m, 2 x 940

T_

~ 899 MeV

alors que pour 7~ 4+ p — K% 4+ K° 4+ n, on obtient

(mg +mg +mn)® — (mx +mp)? (500 + 500 + 940)% — (140 + 940)?

T, = -
2m,, 2 % 940

~ 1,38 GeV

Il existe une large plage d’énergies des pions incidents qui ne donnent que les particules désirées.

“On a
p?r = E‘r2r - m?r = (E7r - mTl')(Eﬂ' + mw) = Tﬂ'(Tﬂ' + 2m7r)

4- Dans le systéme des kaons neutres, on a C’\I_(0> = |KY), Les états propres de C P sont définis par
CP|KY) = +|KY) et CP|KY) = —|KY).

Soit

1 - _ 1 _
—(IK®) — |K%) et |Ks) = —=(|K") + |K°
ﬁ(|>|>)|2>\/§(|>|>)
Si on produit des faisceau de K, les K vont se désintégrer plus vite. On doit donc observer des
désintégrations en 27 prés de la source et des désintégrations en 37 loin de la source (Gell-Mann
& Pais, 1955). Le Ky a été observé 4 BNL en 1956 (Lederman et al.). 71 = 0.895 x 10~ s (qq
mm) et 72 = 5.1178s (qq m!)

K1) =

Le mélange entre K° et K est possible car I'intéraction faible ne conserve ni I'isospin ni I’étran-
geté. Dessiner des diagrammes de Feynman représentant la transformation d’'un K en K.
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5- Quel est le principe de fonctionnement d’un “régénérateur de Kg” ?

Le faisceau de K° peut s’interpréter comme un faisceau composé a part égale de |K)) et de |K9).
Aprés une propagation sur une distance importante, les |KY) dont la durée de vie est beaucoup plus
courte ont disparu. Dés qu’on introduit un écran sur le trajet de ce faisceau, il faut repasser dans la
base K9, KO qui est la bonne base vis & vis de Iinteraction forte. L’état entrant dans le régénérateur
est

1
V2

A la sortie du régénérateur, on obtient un état |X°!) tel que

out\ __ 1 0 £l 0Vy — 1 f+f_ 0 f;f_ 0
) = e ) + 1K) |f|2+|f‘2(ﬁ|f<2>+ hir)

ot f et f sont les transmissions des K° et des K9 a travers le régénérateur.

[ X™) = |K3) = —=(IK") +|K"))

On peut obtenir a la sortie une quantité importante de |K ?} si f et f sont tres différentes.
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10 Introduction

L’article proposé est I'un des deux articles publiés en méme temps, annoncant la découverte d’une
résonance mince pouvant s’interpréter comme une résonance cc.

Cette découverte a valu le prix Nobel aux deux représentants des groupes expérimentaux : Burton
Richter[Z] et Samuel C. C. Ting[I] en 1976. Cette découverte s’est faite simultanément au SPEAR,
collisionneur e™e~ du SLAC en Californie et & ’AGS, synchrotron & protons du laboratoire national
de Brookhaven (BNL) dans ’état de New York dans une expérience de type cible fixe ou un faisceau
de protons était envoyé sur une cible de Beryllium.

Nous étudierons en particulier 'article du groupe de S.C.C. Ting [I] dont la description expéri-
mentale est un peu plus fournie. Aucun des deux groupes ne recherchait un quatriéme quark.

Les résonances, aujourd’hui appelées mésons vecteurs p,w, ¢, avaient été découvertes a des masses
de l'ordre de 1 GeV et des largeurs I',=100 MeV, I',=10 MeV, I'y=5 MeV. Toutes avaient J(spin)=1,
C(Conjugaison de charge)=-1 et P (parité)=-1, comme le photon, elles étaient considérées comme
des photons massifs! Le groupe de S.C.C. Ting recherchait ces “photons” et voulait isoler leur dés-
intégration en ete™ (quel est leur rapport de branchement dans ce mode ?) pour étudier comment la
photoproduction de ces résonances suivie de la désintégration en eTe™ interférait avec la production
directe de paires ¥ — eTe™, afin de mesurer ’amplitude de production de ces résonances. Ils étudiaient
ces résonances dans un faisceau de 101y /s 4 DESY 4 I'aide d'un spectrométre permettant une réso-
lution en masse de 5 MeV/ ¢? permettant aussi de distinguer les paires ete™ des paires de 77~ avec
un pouvoir discriminant >> 10%.[3] (Dot vient cette nécessité ?)

ete” pions
=5
Taux de branchement : f} 3218_5 00'?9889 D’ou la nécessité de discriminer entre
¢ | I'=127keV | ' =4.26 MeV
atn” et ete.

La question du nombre de "photons massifs" de ce type, motiva la construction d’une nou-
velle expérience auprés de l'accélérateur AGS de protons de 28.5 GeV de BNL afin de traquer de
nouvelles résonances de ce type jusqu’a des masses de 5 GeV, produite lors d’interactions fortes
p+p—VO4+ X —efe” + X (ont VO est utilisé pour représenter une particule neutre qui se désintégre
avec une topologie observée dans le détecteur qui ressemble a la lettre V).

C’est ce dispositif qui va permettre la découverte du J.
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11 Un peu d’histoire

11.1 Angle de Cabibbo

En 1963, Cabibbo avait introduit le doublet u, d’ pour tenir compte de la désintégration des
particules étranges [H]. En suggérant que les quarks états propres de propagation (masse) étaient
différents des états propres de l'interaction faible, cela permettait d’expliquer les désintégrations du
type K — ptu,, sans remettre en cause le schéma organisant les fermions gauches en doublets de

'interaction faible ( eyf > , ( :’i > , ( Z > , dont les seules transitions possibles étaient entre les

membres d’un méme doublet.
Cabibbo fait I’hypothése que le courant faible couple au doublet (:j,) tel que

{ d =d cosO.+ s sinf,

s’ = —d sinf. + s cos0,

(K" — p'y)

(= W)

s Vu
K+ -
W+

U wt

F1G. 2 — Désintégration K™ — pt,

~ tan? 6, correspond a un angle 6, de 13.15°.

r
Le rapport des largeurs partielles T

11.2 Meécanisme de Glashow - Iliopoulos - Maiani

Les prédictions de taux de désintégration du K — putpu~ si 'on nOe considére que les transitions

DEL — i) _ (9.1£1.9)-107°.
r ()

L’introduction d’un quark ¢, complétant un doublet faible avec le 8, rendait un nouveau diagramme

possible, dont I’amplitude aurait annulé totalement le diagramme déja imaginé, si ce n’avait été pour

la différence de masse des quarks u et c. En 1970, Glashow - Iliopoulos - Maiani prédisent 1’existence

d’un quatriéeme quark [5.

u + d’ sont beaucoup plus élevées que I'observation expérimentale

5 I 5 H
W W
K9 uf Vi K9 b Vi
- _\_N _____ \_N_ -
d T d ut
M ~ cos f.sin 6, M ~ —cosf,.sinf,.

FIG. 3 — Deux contributions a la désintégration K° — ptp~

Ce mécanisme n’a pas été pris au sérieux avant la découverte en 1974 de la résonance cc, car il
nécessitait 'invention d’une nouvelle particule, pour régler un probléme particulier d'une théorie qui
demandait encore largement a étre validée par l’expérience.

Entretemps, Kobayashi et Maskawa avaient déja théoriquement introduit une 3¢¢ famille de quarks,
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seule fagon d’introduire une phase complexe dans la matrice de rotation de Cabibbo, phase qui per-
mettait d’introduire naturellement la violation de CP dans les interactions faibles.

12 Dispositif expérimental

La zone expérimentale avec les arrivées de faisceau est schématisée sur la figure Bl Le détecteur de
lexpérience est entouré et agrandi sur la figure Bl
Les deux plans de détection jouent un role différent. Les aimants (notés M pour "magnet") déflé-
chissent les particules chargées dans le plan vertical. Pour pouvoir les suivre et mesurer leur quantité
de mouvement, le dispositif est incliné verticalement de 10.33°. Le détecteur est composé de deux bras
identiques disposés chacun a 14.6° horizontalement de chaque coté de la ligne de faisceau. Il intercepte
donc seulement les paires de particules émises de la cible dans ces directions.

BE A [
£xe sz HTETN

F1G. 4 — Le hall expérimental est auprés de ’AGS. L’expérience 598, entourée, est au bout de la station

A

ENS - Lyon 32 M1 - Symeétries et Particules



ad Plan view \ﬂ'ﬁ%@\

0 Im 2m
[ IR E—

by Side wview

Fi1G. 5 — Schéma du dispositif expérimental. Les parties marquées M sont des aimants dipolaires, les
Ap, A, B, et C sont des chambres a fil proportionnelles (8000 fils en tout), les parties marquées a, b
sont des hodoscopes 8x8, S désigne 3 stations de calorimétres au verre au plomb. Cpg, Cg, et C, sont
des compteurs Cerenkov

12.1 Le spectromeétre

Composé des aimants et des chambres & fil, il permet de mesurer la quantité de mouvement
des particules qui traversent le détecteur. Le sens de la courbure détermine la charge. En ef-
fet, la trajectoire est mesurée par les plans de chambre a fil notées Agp, A, B, et C dans la fi-
gure Bl Les 11 plans de fils de 20 pum de diameétre espacés de 2 c¢m ainsi que leurs orienta-
tions sont schématisés dans la figure [ Une particule chargée ionise le gaz de la chambre a
fils qu’elle traverse. Les fils sont mis sous haute tension positive et les électrons libérés se dé-
placent dans le champ ainsi créé vers le fil le plus proche (lignes de champ voir figure [H).
Ils ionisent eux-aussi le gaz, et une avalanche se forme
qui va donner un signal électrique collecté sur les fils
d’anode. Les ions, eux se déplacent - plus lentement vers
les plans de cathode. La charge totale collectée est pro-

0.20

T

2 oo | 2F : portionnelle a I’énergie déposée par ionisation tant que
bl : ] le tension reste en-dessous d’un certain seuil. Au-dessus,
010 T de ce seuil, le passage d’une particule ionisante provoque

i

S

iR <+— des claquages (chambres & étincelles, compteurs geiger).
PR Le nombre de plans touchés permet d’éliminer le bruit
de fond de conversions de photons de basse énergie qui ne
laissent du signal que dans quelques plans. Le rayon de
courbure de la trajectoire dans le plan perpendiculaire au
champ magnétique des aimants est relié a la quantité de mouvement par p; (GeV/c)=0.3-Q(e)-B(T)-
R(m). La mesure de la masse invariante de la paire e™e™ nécessite la connaissance de la quantité de
mouvement de chacun des électrons. La résolution spatiale d’une chambre & fil est de 'espacement divisé

iG]

Fic. 6 — Champ électrique dans une
chambre & fils
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par v/12, ici ~6 mm. Pour rappel la variance d’une distribution uniforme entre -d/2 et d/2, normalisée
2
dj2 /2
a 1 (f(x)=1/d sur l'intervalle et 0 ailleurs) vaut o2 = / 2% f(z)-dx — </ x- f(x)- dm) , donc
—d/2 —d/2
o=d/v12

12.2 L’hodoscope
-500 +80°

Un hodoscope (a,b) sur la figure B est habituellement
composé de scintillateurs organiques. Les scintillateurs, —4F__+20°
matériaux qui réagissent au passage d’une particule ioni-
sante par ’émission de lumiére, sont trés utile pour dé- ~20° +40°
clencher 'acquisition de donnée car leur signal lumineux
est émis en ~0.1 ns, ce qui permet une prise de décision
rapide, basée sur la coincidence du signal observé et de -5° +5°
I’arrivée d’'un paquet de protons sur la cible. %

yd

Fi1G. 7 — Orientation relative des fils des
différentes stations de chambres & fils

-80°

12.3 Compteurs Cerenkov

Une particule chargée émet de la radiation Cerenkov,
lorsque celle-ci va plus vite que la vitesse de phase de
la lumiére dans le milieu qu’elle traverse. L’angle 6. d’émission de la radiation par rapport a la
direction de la particule, pour une particule de vitesse B¢ dans un milieu d’index de réfraction n est
cosf. = 1/(nf3). Le seuil d’émission est donc Bseyis = 1/n et Yseua = n/vVn? — 1. Comme v = %, les
seuils d’émission sont différents pour des particules de masses différentes. En particulier, les compteurs
Cerenkov peuvent étre réglés de facon & ne pas étre sensibles aux pions mais bien aux électrons.
L’indice de réfraction de Cp est choisi de fagon & étre sensible aux électrons au-dessus de 10 MeV
et insensible aux pions en dessous de 2.7 GeV. Les compteurs sont remplis d’Hy et leurs fenétres
d’entrée et de sortie sont de 125 et 250 um. Le nombre de photons produit par intervalle de longueur
et d’énergie pour une particule de charge Qe vaut :

d>N B aQ?

) ~ s 2 -1 -1
dE = ho SiB 0.~ 370sin” 0. (E)eV ™ em™ .

La lumiére produite est réfléchie sur un miroir sphérique et renvoyée vers un photo-
multiplicateur. La tension de celui-ci doit étre ajustée pour étre efficace pour un élec-
tron, mais pas bruyant, car dans la zone de faisceau le niveau de radiation est trés
élevée et il faut éviter les coincidences fortuites. Les photomultiplicateurs sont réglés
de tels sorte que le passage dun électron produise un signal de 8 photoélectrons.
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12.4 Calorimétres

Placés derriére les autres détecteurs, les calorimeétres
mesurent ’énergie des particules en les faisant intéragir
dans un matériau dense et si possible scintillant et
transparent. Le nombre de particules produites lors de
I'interaction (électromagnétique pour les e™ et 7 et ha-
dronique pour les hadrons) est proportionnel & I’énergie
de la particule. Ces particules vont elles-méme interagir
dans le milieu. Les particules chargées produisent de
la lumiére (scintillation et/ou Cerenkov) et celle-ci est
collectée. Aprés calibration avec des faisceaux d’énergie
connue, l'intensité lumineuse collectée permet de mesurer
Iénergie de la particule incidente. Afin de capturer
toute la gerbe de particule il faut prévoir plusieurs (
habituellement entre 5 et 8 ) longueurs d’interactions
nucléaires. La figure @l montre pour quels éléments cette FI1G. 8 — Photo du compteur Cerenkov Ce,
longueur est la plus faible et donc la plus intéressante du avec les chambres multi-fils (A,B,C) a l'ar-
point de vue du cott en détecteur. Les matériaux choisis riére et des plans d’hodoscope (Z). Tout a
ici sont du plexiglas au plomb et du verre au plomb [’arriére on devine le calorimétre au verre
(PbO, qui est transparent mais d'un Z plus élevé que le plombé (U)

Si et plus dense que la silice). Il y a 10 longueurs d’interaction de telle sorte que toute I’énergie des
particules sera contenue. Chaque détecteur est segmenté en environ 100 cellules afin de mesurer la
direction de la trajectoire des électrons.

ing part of the Cerenkov caunter Ce, the chambers A,
iers Xocables Y, and hodoscopes 7. The Tead-glass counter

Pour calibrer la réponse du calorimétre aux électrons = - : i 5
il faut pouvoir injecter un faisceau d’électron dans la ligne P E se s
de faisceau. La calibration est faite au moyen de la dés-
intégration en vol de 7 — yete™ (7 = 107¥s). Dans
le bras ou la polarité des aimants est prévue pour sélec-
tionner les charges négatives, le e est défléchi vers l'ex-
térieur. La coincidence entre le Cerenkov o il est mesuré
et les hodoscopes et les autres Cerenkov permet de s’as-
, . ) . Figure 28.21: Nuclear interaction length Ar/p (circles) and radiation length Xo/p
surer qu’on a un faisceau pur d’électron pour calibrer (au (+75) in cm for the chemical clements with Z > 20 and Ay < 50 cm.
moyen de la quantité de mouvement reconstruite grace au
spectrometre) FiG. 9 — Longeur d’interaction nucléaire di-
visée par la masse volumique (A;/p) et de

12.5 Blindage radiation (électromagnétique) Xo/p (pour
les éléments au-dessus de Z=20)

8
T

Afp (cm)
]
Xo/p (cm)

8
T
3%
7
£

5
T

]
20

Toutes les secondes 1012 protons arrivent sur une cible

dont la longueur est de 10% de la longueur de collision. Il y a donc autant de particules qui arrivent
dans la zone expérimentale. Pour protégéer les détecteurs et les physiciens, ils ont da récupérer plus
de blocs de bétons que n’étaient disponible & BNL! Il leur a fallu 10 000 tonnes de béton, 100 tonnes
de plomb, 5 tonnes d’uranium et 5 tonnes de savon(!) (au-dessus de Cp, entre M1 et M2 et autour de
Ientrée de C, pour stopper les neutrons lents). Méme comme ¢a le niveau de radiation dans la zone une
heure aprés l'arrét de faisceau était de 50 mSv/h (2.5 fois la dose annuelle admise pour un travailleur
du nucléaire en France!)
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13 Questions

1- Pourquoi choisir des collisions proton-noyau plutot quun faisceau e™e™ 7 Quels sont les problémes
inhérents aux deux options?

Avec une collision proton-noyau, on peut couvrir plusieurs énergie de centre de masse des intéractions
élémentaires. De plus, les particules recherchée sont produites via l'intéraction forte, c’est donc plus
efficace. Le probléme est de tenir le flux de particules produites lors de ces collisions.

2- La cible choisie pour le faisceau de proton est du beryllium. Pourquoi ce choix plutot que du
plomb ou du tungsténe ?

On emploie des cibles en beryllium car elles chauffent moins et donc risquent moins de fondre. Leur
A faible fait qu’il y a moins de nucleons de basse énergie par interaction, sa capacité calorifique entre
20°C et la moitié de la température de fusion est 5 fois plus élevée que celle du tungsténe par exemple,
et il est facile & refroidir.

3- Pourquoi choisir 14.6° comme angle par rapport a la ligne de faisceau? (Quelle est 1’énergie
cinétique dans le référentiel du centre de masse a laquelle le taux de production du V® inconnu
sera le plus élevé ? Pour un VY produit par un faisceau de protons de 28.5 GeV dans le référentiel
du laboratoire. Avec cette énergie cinétique dans le centre de masse, & quel angle sont émis la
paire d’électrons recherchée et produite par désintégration ?)

La production est maximale & la résonnance qui correspond a la particule produite au repos dans sont
référentiel propre. Si on se limite aux désintégrations ete™ partant & 90° ( moins de contamination
due aux restes de la collision plus sur 'avant ), ces électrons émergeront a un angle de 14.6° dans le
laboratoire ( ot les protons ont une énergie de 28.3 GeV.

4- Vu sa position, a quoi peut bien servir le compteur Cp ?

Le compteur Cerenkov Cp sert a détecter les électrons provenant de la désintégration 70 — ~vete™.

Un électron est détecté dans Cpg, 'autre part dans le spectrométre avec des caractéristiques de ce fait
connue. Cela permet d’étalonner le spectrométre avec des électrons connus.

5-  Quelles sont les hypothéses faites sur ce que peut étre la résonance ?

Les particules charmés ou les a ( un truc qui a a voir avec 'unification électrofaible d’aprés le papier
référencé dans larticle ) ou le boson Z°.
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14 QED et la réalité du nombre quantique de couleur
L’intérét de la production en mode ete™ est particulier dans le sens ou la mesure du rapport
R— o(ete” — hadrons)
~oleter = ptpm)

de QED ordinaire.

(voir figure [[Il) permet tester 'hypothése de la couleur, dans un processus

L’amplitude du graphe de la figure [ :

+ —1

/ —IM = [Ve(iey" ) ue] 92’“/ [tf(igrey”)vg], de telle sorte que la sec-

q

tion efficace pour chaque paire de fermion-antifermion est o5 o
|M|?, de telle sorte que, si on néglige les effets d’espace de phase,
le rapport :

- o(ete” — hadrons)
N R= - e > df

o(ete — ptpum) 7

v

e
Fic. 10 — Production d’une paire
fermion anti-fermion (seul graphe
sauf pour f=e)

En-dessous du seuil de production du charme, on s’attend & R =
. (%1)2 + (%)2 = % si le seul nombre quantique différent au
numérateur et au dénominateur est la saveur des quarks. Si il y
a en plus le degré de liberté de couleur, on s’attend & ce que
R = 2. Au-dessus du seuil du c et avant celui du b on s’attend
N —1\2 2)2 10 10
aR=2 [ (T) + (g) } = < sans couleur ou 5 = 3.33 avec la
couleur. C’est bien ce qu’on observe sur la figure [[1 & peu de choses prés... (Quelles approximations
a-t-on faites ?)

Les masses des quarks sont différentes, mais surtout les quarks ne sont pas des fermions libres qui
obéissent a I’équation de Dirac. Ce sont des particules virtuelles qui vont interagir & nouveau : hadro-
nisation, formation d'un état lié.
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Calcul de |[M|? :

_Z v . 4
(2m)® / [T (iev™ )] q%“ [as(igrey”vi) 6% (s + Py — )6 (4 — Pe- — De) (5734

= i(21)* [Ue(en™ue] [T (qren” vy] Wi_#(sll(pf +Df = Pe — Pet)
= M = —[ve(er")ue] [us(grer”)vs] (p_iﬁ

+HIMF = [ul(—ievofy“’yo)’yove] (% [v}( ZQfe’YO’YV’YO)’YOUf}

. Po— D+ )2
= —i[te(ey")ve] (pe_+;+) [0 (arer”)uy] ,
M]? = ¢2e* [6.4% o [u P } UeyHve] r vy u
. g [6246]( —tper2 LY g e —+pe+)2[f s
1 1 dje ) _
- Z |-/\/t|2 = _f74 Z [Ue'ya %e"yuve] 9apYuv [Uf'yy %f’yﬁvf]
4 St 15— sS85 ] 4 (pe— +pe+) St 5]
2 4.9
qie'p’_psr . _
(IMPP) = L N [Geypysmve [vﬂ”v vﬁvf]
4( —+pe+) St 57
_gje 0 _preplips
! ST ] Tr [w”vwﬁ v }
%(4 5 P A)
4q e p. PP Py,
=1 e T p e) ~ [9859ux — 9ou9sx + 9prTov) [g”gﬁ“ 9P g + g7 g’ ]
4q?e -
= o)t [Pe-gPetv — 9pu (Pet * Pe-) + Pt gDe-v] [p?p? — 9" (py - p7) +p
- e
4q%e4

= o7 LPe Pp) (e - p) = (e pe) (b1 - p7) + (e py) (b -p9)

— (p5 - P7) (Pet - Pe-) + 4 (Pt - pe-) (P7 - P7) — (05 - Pf) Pet - Pe)
+ (pe- pf) (Pt - Pr) + (Pe+ - ) (e - pg) — (5 - Pf) (Per ~ Pe-)]

8qfe4
= o) [(pe~ - PF) (Pet - Df) + (Det - PF) (De- - PF)]
8q?e4
= m [(pe_ ’pf) (Pe+ ~py) + (pe+ 'pf) (Pe- ’pf)}
1
o _ (M) 2m)*6* (pe-  + per — Py — pp) X
4/ (et - pe-)? — (me)4/
s T o p P =i = (B + Bl |
Pet " Pe— )" — (Me)” = et e— )| Pe— |
2(2m)3, /ﬁ?v + m? 2(2m)3 /15?; + m%
En effet : po+  po- = Eer - Eoe — Po-Pet = Eer - B + (ﬁe—)Qa

et comme m? = B — (p,-)* = B% — (.- )%,
Ona(pe+'pe*)2_(me)4_E2 E2 +ﬁ: +2_'2 E Ef—E2 E2 —_"2 (E2+—|—E2 ) ]34_

e

1 / 4 d’py dpf
=0 = \M\ 5 (Pe— + Pe+ —Df —PF
2 e f
16(27)2(Eo+ + E.-)|p.-| \/pf+m \/pf+mf
1 / 4 d?’pf d3 Pr
=0 = \M\ 5 (Pe— + Det+ —Df — D5
2 e f
64 (Ee++E Pe— | \/pf—l—m \/pf—l—mf
1 L py dpy
=0 = <‘M‘2>53(pf +07)0(Ee+ + E.- —
647r2(Ee+ +Ee—)|ﬁe—|/ ! c c \/
pf—i—m \/pf—l—m
1
=0 = M2V S(E E._ —2./p% 2 S —
7 647r2(Ee++Ee)lﬁe|/<| %) 0(Eer + Ee Pyt ) (pf+mf)
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On transforme en coordonnées sphériques d>p ;= |Z7f|2 d|jy|dQ

do 1 > |ﬁf|2d|ﬁf|
E = M HDS(E L B —92./9%2 +m2) x 2L EIT
dQ  647*(Ee+ + Ec-)|pe-| /0 <‘ | > (Eex ¢ Py f) (pf i‘m?)
O d 21y >
n change de variables avec u = 2 ﬁ? + m? donc u |D¥| ulpy|

= i
RN A

o ! = ME [yl

a0 - S(E E._ — )22

0~ G £ B fy (M B0

do (|IM?) 7]

a0 - = E E.-)?/4— E2 — 2

dQ  6472(E.+ + E.- ) | 7| u |py| = \/( o+ + )2/ m \/ m?

et donc do _ Qfe (BeEyp)? + |77 (el cos® )5y N Qfe (BeEf)*(1 + cos?0)Ey .
df} Eg 256725, | = g 567E, o

q]%e‘l (EeEf)*(1 + cos®0)

E3 25672
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Figure 41.6:  World data on the total cross section of eTe™ — hadrons and the ratio R(s) = o(eTe™ — hadrons, s)/o(ete™ — ptu~,s).
o(ete™ — hadrons,s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, o(ete™ —
uhp—,s) = 4ma?(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/#¥, 1(25), and T(nS),n = 1,2,3.4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.1bl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.) See full-color
version on color pages at end of book.

Fig. 11 -
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TD 6 : Révisions

Reégles de Feynman

Rappel des régles de Feynman pour QED

Nous rappelons les régles de Feynman pour QED. Pour QCD et l'intéraction faible, le schéma, de
calcul est le méme, seules changent les expressions des vertex et des propagateurs. Les vertex pour
toutes les intéractions du modéle standard sont donnés dans la section [5.2l

1-

A chaque ligne externe, associer un quadri-vecteur énergie-impulsion p1,...,p, et rajouter une
ﬂécheﬁ indiquant la direction positive dans le tempﬂ. A chaque ligne interne associer un quadri-
vecteur énergie-impulsion ¢y, ..., ¢y.

Les lignes externes contribuent des facteurs :

 Electrons { Entrant : u fleche vers le vertex
Sortant : @ fleche sortant du vertex

Entrant : v fleche sortant du vertex

— Posit N
ositrons { Sortant : v fleche vers le vertex

_ Photons Entrant : Ef
Sortant : €,
Vertex : Chaque vertex contribue un facteur igy" ou g = —q+/4m/hic ou q est la charge de la

particule (et non de 'anti-particule). Pour les leptons chargés ¢ = —e et donc g = v4ma mais
pour les quarks u on a q—2e/3 et pour les quarks de type d on a q—-e/3
i("qu + mc)

5 55— bour les fermions et
q* — m#c

Propagateurs : chaque ligne interne contribue un facteur

_iguu
q2

pour les photons (avec les indices se contractant avec ceux des lignes fermioniques que le

propagateur connecte).

Conservation de I’énergie et de 'impulsion : Pour chaque vertex on écrit une fonction delta de
la forme (27)*6%(k1 + ko + k3) oti les k sont les énergies-impulsions entrantes dans le vertex (un
signe moins pour les énergies-impulsions sortantes)

) , . . . . L. d4q;
Integrer sur les energles—lmpulsmns mternes : pour chaque @q; ecrire un facteur (27Tq)14

Simplifier la fonction 6 : Le résultat incluera un facteur (27)*6*(py + pa..... — pn) correspondant
a la conservation énergie-impulsion globale. Simplifier ce facteur et multiplier par i pour obtenir

M

Antisymétrisation : Inclure un signe moins entre deux diagrammes qui ne différent que par
I’échange de deux electrons (ou positons) entrants (ou sortants), ou par I’échange d’un électron
entrant avec un positon sortant (ou vice-versa).

2differente de la fleche dénotant le courant fermmionique.
3Cette fleche du temps permet de distinguer les lignes entrantes des lignes sortantes.
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15.2 Reégles de Feynman (& ’arbre)
15.2.1 lignes

‘ ligne externe entrante ligne externe sortante

scalaire (spin 0) rien rien
. .1 _
fermion (spin ) X u u
anti fermion (spin 3) v v
3 *
vecteur (spin 1) €n €

ligne interne (propagateur)

1
scalaire (spin 0)

¢ —m?
: : i(d+m)
fermion (spin i —
( p 2) q2 _ m2
. _iguu
vecteur sans masse (spin 1) 5
q

s - qudv
1G9 + 1 m2

vecteur massif (spin 1
(spin 1) pr—

15.2.2 vertex

Les vertex sont tirés de D. Griffiths, Introduction to Elementary Particles, Wiley Ed., 2008 (annex
D.3).

QED

igy" (g = V4ra)
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QCD

o, L

—Ifs A."}/“

_g&faﬁy (gl — q2)x + gualdz — q3)
+gu (g3 — g1

— g2 [P Yo (ga 8o — Bupln)
+f“3”fﬂy" (8uvBip — uaBup)
R (81upBus — v
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Intéraction faible

?i%?“(l —¥°) (Here lis any lepton, and

vy the corresponding neutrino.)

%‘%y“(l —y3)V; (Herei=w, ¢, ort,andj=d, s,
or b; Vis the CKM matrix.)

cy and ¢y are given in the
following table:

f Cy €A
1 1

Ve, Vi, Vr F 2
g 1 4 9¢in2d 1

B sl «T —3 +2smn° 6, —3
. 1

U, c, t % - % sin® 0, 3
d,s b -1+ %sin’0, —3
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L‘gw Ccos Gw[gi'h(ql = ql}ﬁ
(g2 — q3)v + Gun(d3 — 41)a]

i I'gi COSZ ()w(zgpwglr) — BB — g,mgu;,)

idgonlh — qa)u
F G2 — G3)v + Zuelqs — g1)1]

- "'gf(zg.uwgkrr — BurBvs — Buofen)

- igﬁgw Cos Gw(zg,'wg/'m ~ Gurlve — Epafur)

16 Taux de désintégration du W

Le taux de désintegration d’un boson Z ou W vers une paire de fermion anti-fermion de masse

négligeable est .
'=——>F—— [ dQ 2
64 w2 My, / M,

1- A partir du couplage entre le W le e et le v : —i2—\g@7“ (1 — 75) et en négligeant les masses des
fermions, démontrer que

2 9 PN gy | v
M[" = 3\ 9w + M2 [y kg + KV Ry — (kv - k2)g"™]
w

(k1 et ko sont les impulsions du e et © sortant). Pour ¢a
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— vous utiliserez des identités de traces avec matrices 7 comme :

Trly" p1v” Po] = Alpips + pivh — (p1- p2)g™]
TI'[’YM’}/V’YP’YU’}/E’] = 4jetvPo
(1)
— vous utiliserez que la somme sur les polarisations du W est 69)* N = —Guw + q“ e

(¢ = k1 + ko étant P'impulsion du W).

Pour un W de polarisation (A), on obtient pour un élément de matrice :

iM = —z’2\g/§e M (q) [e(k)y" (1 = 7°)vg, (k2))

2
(MP? = e (@) ZZ e (ki )y (1 = 7°)vs, (k2)] [Tk )" (1 —~%)vs, (k2)] "

Se

En utilisant les formules de Casnmr, on obtient :

2
IMP = T @M @Tr [0 =17) (ke = ma )7 (1= 47)( + me)]

Et en négligeant les masses des fermions :

(M|? = % e (@eN (@) Tr [v(1 = 7°) kar” (1 =7°) ]

= L (@) (@)Tr [172(1 = 77) fr” f]

- %ELA)(q)gl(l)‘)*(q)Tr (149" Jay” Ha]

= g%¢ f[\) (@)eM*(q) (kVkS + KVKY — (k1 - ko) g™ + i€"” kapki,)

)

Pour un W non polarisé, il faut faire la moyenne sur les 3 états possibles de polarisation :

(Mo = 292 M (q) [Kky + KYKY — (k1 - ko) g + ie'” 7 kopki,]

2
-5 <_9W i %é) [ + KRG — (k1 - ko) g + i€ Thayh]

2
_9 <_9u” + qy) (kYRS + ki ky — (k1 - ka)g™]

ou on a utilisé le fait que la contraction d’un tenseur symétrique avec un tenseur antisymeétrique est
nulle.

2
Q_MI%V

2- Montrer que |M|%ot = 3
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(Mo = g; <—2(k:1 )+ Al - ) 4 24 R(@ ];\;)EV_ (k1 - kg)q2>
_9 2q - k)(a- ka) = (y - ka)g®

Dans le C.M. du W, on a ¢ = (My,0,0,0), k1 = 2% (1,0,0,1) et ky = 20%(1,0,0,~1) et donc
ki-ko=gq- kl =q-ky= M—;" et ¢ = M‘%V et le terme en 1/M5V s’annule.

9
= |M|t0t 3 MW

3- Démontrer que

— g
rw = — M
(W — ev) ag g W
(négliger les masses des fermions)
g M _ _1 4m®Mw _ g>M,
[= 647r2MW fdQ T 64rn2 7"93 = g487rW

4- Plus généralement le vertex correspondant a la désintégration d’un boson vecteur X en deux fer-
mions de spin 1, fi et fo est —igx 37" (cv —ca®). Montrer que ['(X — f1fo) = 487r X (e} 4 c4)Mx.

Dans la trace précédente, on remplace le calcul de (1 —~°)* = 2(1 — ~°) par (cy — cay’)? = (& +
0?4) — 2¢yeqy® Le terme avec ’y5 donnera une trace en e*??? qui s’annulera avec la contraction avec le

V"‘

tenseur symétrique —g,,, —|— . On aura donc un facteur de correction de . Dans 'expression

M 2
2
gx : g : . : 29% .
du vertex, on a Y au lieu de ——= ce qui au carré occasione un facteur —=-, donc le résultat est

2v/2 9>

9% (& + )
2

modifié par un facteur . Au final, dans l'expression de I'(W — ep), il faut remplacer g?

par ggc(cv +c) et My par Mx
QX

=1 = (CV + CA)MX
487
fermion CA cy
BOSOH gX ”CA”, ”CV” I/e’ I//J’ I/T % %
w % 1 Couplage au Z : | e ,pu , 7 —% —% + 2sin? Oy
A COSQQW voir tableau ci-contre u,c,t % % — %sin2 Ow
d,s,b —% —% + % sin? Oy

5- calculer la valeur numérique du taux de désintegration du W vers une génération de leptons, en
prenant o = e2/4r = 1/128, my = 80,450 GeV, et g = e/sinfy, avec sin’ Oy = 0.232. Que
sera le taux de désintegration total du W, sachant qu’il y a trois générations de quarks et leptons ?
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_ _eMw _ _aMw _ __80.45 —
Twow = ity = Beantoy — w80z GeV = 226MeV

I'w—gd=Twoe =3lw—p = T'w = 3T w_n +2I'w_y) ~ 2GeV

6- Calculez les largeurs partielles I'(Z — v.l.) pour une masse du Z de 90 GeV. ( gz =
e/ (sin Oy cos Oy ) )

- e? 12 (12 = e? — a -
FZ_’VE'/F/ T 48msin? Oy cos2 Oy Mz (2) + (2 ) T 967 sin? Oy cos? Oy Mz = 24 sin? By (1—sin? Oy ) Mz =
164MeV

7- Calculez les largeurs partielles pour les désintégrations Z — eTe™, tu, dd. N’oubliez pas de tenir
compte de la couleur. Prédire la largeur totale du Z dans le cadre du modéle standard.

fermion cA cv A+c | T, 77 (MeV)
Ve, Vs Vr % % % 164
e ,u,7 | =5 | —5+2sin®0y ~—0.03 | 025 82
1, - 5 — 3sin” Gy ~ 0.19 0.29 95
d,s,b —2 | 3+ Zsin?0y ~ —034 [ 037 121

FZ == 3(FZ—>VEZ7€ + FZ—>6+6_ + 21—‘Z_>ﬁ+u + 3FZ_>CZ+d):24GeV

17 Diffusion avec électrons, positons et photons

1- Donnez les diagrammes de Feynman et M pour
— la diffusion électron-électron
— la diffusion électron-positon
— la diffusion compton.
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Diffusion électron-électron :

e (p1) e (p3) e (m) e (p3)
On utilise les regles de Feynman pour calculer I’élément de matrice du graphe de gauche :
. —1 _ .
(271')4/ |:a(83)(p3)zgfyﬂu(81)(pl)] q%lw |:u(s4)(p4)zg,yuu(82)(p2)} % 54(]?1 — 3 — q)54(p2 oyt q)d4q

On intégre, multiplie par i, enléve un d de conservation de 'impulsion-énergie totale et on obtient M.

2
g _ _
= Maaene = = 1oy |56 )y ulo D )| [569 00,02 (p2)|
Le graphe de droite est le méme avec les électrons sortants interchangés, il va s’ajouter avec un chan-

gement de signe a celui de gauche.

2
R A P ) g, (1) i (s4) (s2)
> Mo + Maroin =~ Sy [0 )yt ()] [ (a2 ()|
9 [asa) Lo, (51) - (s3) (s2)
o (10 D )| [8) () 02|
Diffusion électron-positon :
e (p2) et (p1) e" (p2) et (pa)
7 (q)
7 (q)
e” (p) e” (p3) e (p1) e” (p3)

On utilise les regles de Feynman pour calculer I'élément de matrice du graphe de gauche :
. s G [ _(s . v, (s
)t [ a4 paigyut®) o) 2 [0 )i oD (pa)] x 8401~ ps — )54 (2 — pa+ a)d%

On intégre, multiplie par i et on obtient M ggyche-
2
= Mauuche = =y [ (o)) )] [0 (92,0 )]
On utilise les regles de Feynman pour calculer I’élément de matrice du graphe de droite (annihilation

électron-positon suivie de la production d’une paire) :
; . s —1 vV | (s . v, (s
(27T)4/ [ﬂ(s“)(pg)zg’v“v( 4)(174)] qg; [”( 2) (pa)igy” ul 1)(171)] x 84 (p1 + p2 — q)0"(q — ps — pa)d’q

On inteégre, multiplie par i et on obtient M groite-

2
= Maroite = =ty [1090 a0 )] [0 2y o)
Le graphe de droite est le méme que le graphe de gauche avec 1’électron sortant échangé avec le positon

entrant. Il va s’ajouter avec un changement de signe a celui de gauche.

2
9 [Z(s3) ), (s1) 7(s2) (s4)
= Mgauche + Mdrozte (p1 ; p3)2 [’U/ (pg)’}’ u (pl)] {U (p2)'7;ﬂ) (p4)]
9 =(s3) W, (54) 7(s2) (s1)
ot P o )] [0 ) )|
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Diffusion Compton :

v (p2) e” (ps) v (p2) e” (p4)

e” (p1) v(ps) e (p) v (p3)

On utilise les régles de Feynman pour calculer ’élément de matrice du graphe de gauche :
s —(s . i(f +me) . v, (s *(s
(2@4/ R [u( 4)(])4)197”%197 ulD (p) | ) x 6*(p1 — ps — ¢)0* (p2 — pa + q)d*q

On intégre, multiplie par i et on obtient M ggyche-

2
g —(S S S S
= Mgauche = (pl _p3)2 —m2c2 |:’LL( 4) (p4) éQ)(ﬁl_ %3 + mC) ¢Z( 3)’LL( 1)(p1):|
On utilise les régles de Feynman pour calculer I’élément de matrice du graphe de droite :
= Mdroite = (pl +p2§2 —m2c2 |:ﬂ(84)(p4) ﬁflsg)(ﬂl"i_ 152 + mc) %(82)u(81)(p1):|

Le graphe de droite n’est pas le méme que le graphe de gauche a un échange preés. Il va s’ajouter a
celui de gauche. M = M gquche + Maroite

2-  On considére la diffusion électron-électron, calculer 'amplitude au carré de chacun des 2 graphes.

Le terme de gauche contribue au carré comme :

4
[Mauche|* = (gﬁi I {6(53)(113)7%(51)(171)} [6(53)(113)7%(81)(171)]

b1 —P3

*

s§1  S$2 83 S84

(169 (0a)7,002) (92)] [659) ()72 (2)]

En utilisant les formulis de Casimir :

— g

= [Mgauche|* = WTY (v #17" B3) Tr (yu Boyw #a)
- 494

= [Mauche|” = o= pa) iP5 — g (1 - p3) + Psp1] [P2upav — Guw (P2 - P4) + Papp2i]
2 8g*

= | Mgauchel” = = o) [(p1 - p2)(P3 - a) + (P1 - Pa)(P3 - P2)]

29" i :
(1 -gp3)2 [(p1 - p2)(p5 - pa) + (p1 - pa)(p3 - p2)] o on a utilise le fait que (p1 — p3)* =

p% + p% — 2p1 - p3 = —2p1 - p3 en négligeant les masses.
Le terme de droite s’obtient en échangeant ps et py.

4
|Maroite|* = (1712#4)2 [(p1 - p2)(p3 - pa) + (p1 - P3) (P4 - D2)]

= |Mgauche‘2 -
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3- Dans les formules de Casimir, intervient T' = 4°T'T4% montrer que :
— [ﬂaFub] = [ﬁbfua]*
-T=T
— YEATYY = ATk

" T * *
— [ugTup] = [ﬂaFub]Jr = [uzvofub} = [uZF’yOua] = [UZ,YO,YOP,YO%] =
= — T
_T= ,YOFT,YO — 0 (’YOFT’YO> A0 = 4040f A 0T10 —
A7 = 2 (PP ) T A0 = A0y Tipty0

e 0 e o e AL e A L%

=y

[T

4- Calculer le terme d’interférence entre les 2 graphes.
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Mauche M, oive = FTE— nE Z Z Z Z (83)(p3)7uu(81)(p1)_ [a(84)(p4)%u(s:2)(p2)_

S1 S22 S3 S84
[ﬂ““(m)v”u(sﬂ(pl) @) ()0 (p2)|

*

[ —

S3  S4

= Mgauche roite =

gt
droite
4(pl ( S3  S4
En utilisant les formules de Casmilr :
—9g
= Mgauche My pite = Tr (v $17" Pavp P2y V3
gauches " “droite 4(p1 —p3)2(p1 _p4)2 (’Y % Y % T I/j % Id )
On utilise les propriétés suivantes des matrices v : y#+¥ ’y’\fy“’yu = —297 Y et iV ’y’\’yu = 4g"*

pour calculer :

Y BV Bavu P2 B3 = ProParP2aP3sY YV Y Y oy

= —2p15PaAP2aP357 Y YV W’
= —8p1oParp2aP3sY 97"
= Myguane M, = T IER (p1 - p2)Tr (P4 P3)
= M ; B (P1 - p2)(p3 - pa) i (p1 - p2)(p3 - pa)
gauche -drozte (p1 — p3)2(p1 _ p4)2 ' _ (p1 - p3)(p1 - pa)
Pour des particules de masse miue p1+p2 = p3+ps implique p1-p2 = p3-p4,p1-P3 = P2-P4,P1°Pa = P2°P3
2g 2
= MgaucheM:;roite = (pl . p3)(p1 . p4) (pl ’ pz)

Myouche Minoite = 40552 A nE ; %: %: ; _ “”(m)w“u(s”(m): [ﬂ(s“)(mmu(”)(m):
[a<51><p1>v”u<54><p4>} [a<82><p2mu<83><p3>]
= Mgauche M, oite = Lp1 —pa)? e %: %: a%) (p3)y* (; U(sl)(m)> 7 u*) (pg)
) (pa)Vu (Zu )) ™) (p3)
= Moauere Mpoie = g0 2(4 2 ZZ [ ) (pg)y* gy u (p4)] [ﬁ(s‘*)(m)w Parul™ (p

nE SN [ 53) (pa)y"* 1y ul>t (m)] [6(53)(p3)7u Pyt (p,

5- Montrez que pour la diffusion électron-électron a haute énergie (m. négligeable), on a
2| — 244 L -p2)* + (p1 - pa)* + (p1 - p3)*
M| =297 5 5 |
(p1 - p3)*(p1 - pa)

= [M®] = [Myauenel® + [Maroitel* = 2Mgauche My e
ﬂ2| P (p1-p2)? + (p1-pa)®  (p1-p2)® + (p1 - p3)? 2(p1 - p2)? |

(p1 - p3)? (p1 - pa)? (p1 - p3)(p1 - pa)
ﬂ2| P (p1-p2)? (1 - pa) + (01 - 3))* + (p1 - p)* + (11 'p3)4|

(p1-p3)*(p1 - pa)?
Or (p1-pa) + (p1-ps) =p1 - (pa + ps) = p1- (1 + p2) =p?+p1-p2=p1-po
= = 24t (p1-p2)* + (1 2p4) + (2}71 p3)
(p1 - p3)(p1 - pa)
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