IX - Rayonnement d'une charge accélérée

D’apres I’équivalence des reperes gahleens une charge en mouvement uniforme équivaut a
une charge au repos. Elle crée des champs E B et le vecteur de Poynting n’est donc pas nul :

=/
E=p=-%1" coulombien au repos dans (S’)
dmeg 1’3
— 1 —
B= —--FE'AU
c
EANB=E'"ANE'AT)= (E'0)E'—(7'?)

mais, bien entendu le flux total associé a ce vecteur de Poynting sera nul & un instant donné
pour tout volume entourant la charge. On peut le vérifier numériquement avec une sphere.

1. Les 4 potentiels de Liénard Wiechert

On suppose qu’il n’y a pas de champ ambiant pour t = —o0
1 O(xog — x{
AP (z,t) = — — [ d*2’ O(w0 = 7o) § ((x —a")?) j*(z")
€0 2T

3#(@) = (p, pi/c)

en effet, la fonction de Green & 6 (1 — R/c) correspond &

1 c 1
— [ cdt 6(c*t? — R?) = =
2T /C (c ) 4Amc3t AR

-,

On rappelle les équations des potentiels en présence d’un courant (p, 7)

dp
Vi4+—==0
o
— 1—)
9A= —j/c
€o
1
9U = —
€o
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Pour une charge ponctuelle

On part de

1 1 T— |
AP (Z,t) = il ol t— ) dB
() deg / |z — & J <a:, c > v

en substituant les valeurs de p et f, on obtiendra

a3z’
AO — t — q / 5 —/ - t—
(7:1) 4Teg |Z — 2| s\* T

L’intégrale avec fonction d3 peut se traiter par changement de variable

Jeseen (- 2))sr-n (ol (- 2)-

=

T — T

c

[ dednac S5 ) ) 610
R=|Z2-2' %——(m—x') etc ...

ou
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en introduisant § = 7/c

o€ x—x  0¢ y—y 0 z—z
—=1- T 5 a5, — Mz N, — Mz

oz’ A R dy’ A R 0z A R
dp x—x' On y—y On z—2
_— = — _— = 1— _— _— = —

oz’ Py R dy’ Py R 0z Py R
¢ r—xz' 0¢ y—y 0 z—27
A A R A

Le Jacobien J peut se calculer en choisissant OZ selon 3 a cause de l'invariance par

rotation.

3./
diq&)(f/_,r(t_

ERE:

ol [ Jret signifie calculé avec la valeur de R pour la particule a l'instant ¢t — R/c.

q
dmeg [(1 - g'ﬁ)R]ret

A=

q v/c
dmeg [(1 - g'ﬁ)R]ret

A=

Les quantités sont toutes calculées &t =¢ — R/c

Les expressions sont les potentiels de Lienard Wiechert associés a une charge ponctuelle

en mouvement.

b) Calcul covariant

an = 1 / d4a dr (o — ) 5((:[; - a:’)2> U (r) b4 (:g - r(t))

2meg

7 : temps propre
UH . UF(1) =dz*/dr
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On a défini a partir de

p=as (7-70)
j=q
dz
() et
g (x) q/deT54

2
Rappelons que d7 = dt /1 — v2/c2. L’intégrant ne differe de 0 que pour (x - 7"(7')) =0

Une seule solution pour 7(7) < x°, que I'on notera 7,

a / d70<x0 —1"0(7')> 6((3:—7"(7))2) Uu(7)

2meq

(:1: - r(7’)> qui est une expression covariante

0= G Tl T0
Les composantes se simplifient
(m - r(T)> U(r) = <x0 - rO(T)> Uy — (& —7).0
_dwo db

OT it “dr

L 47 dt
_ — I

= dt C dr
2
U2:F202<1—v—2>: c?
c
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(z—7).U= T cR(1-fF)

dax*
gt —r &
dt
g I' %o B q

AO - = - -
dmeg I ¢ R(1 — B.ii)  Ameo[(1— ﬁ.ﬁ)R]mt

2. Les champs électriques et magnétiques

104 -
I yA®
c Ot v

—

VAA

&=
[l

v
[l
o=

Calculs simples mais attention a 'effet des potentiels retardés : le temps t’ dépend de

maniere indirecte de ¥ et cette dépendance doit étre prise en compte. Les expressions de
Lienard Wiechert donnent A° et A en fonction de x,y, z et t' = t — R/c. 1l faudra donc passer

de t’ at.
R(t') = c(t—1t) R = f_F<t_E>‘
C
OR _ OR 0
ot ot ot

mais  R?= (& —7(t— %))2

O SR
Ty e (-7 =R



On va établir les dérivées partielles nécessaires par une méthode de différentiation plus
transparente :

a) t —t+ 6t
7(t) — 7+ 70t/ 5t' # ot
R — R — (0.7)6t' o=
de telle maniere que
t4+ & 45t = ¢+ ot 4 BT
SR = — U1 4t meéme résultat
1-p8.71
b) ¥ — ¥+ 6% (t inchangé)
7 — T+ U6t
R — R+ 6% — 00t = 0R = it.(62 — 76t')
5t' + 2R =0
dR/c

——
6t' + 1 7.(6% —o5t') = 0

5t’<1 — @) = —ii.

o &

—

—nj/c

1— 3.7

~

‘o,
~
Il
<
8
A

|

(%
8y
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ceci nous permet de calculer les contributions a E et B

ot ot'1 -G

0A° qg = 1
5 = Vi S
ox dmeg [R — .R] e
q -1 [ 7 - —»—»]
= = — — V(B.R
dmeo (R — B.R)? L1 — 3.7 (B-5)
B est une fonction de t — %:
= 0f = (d—ff) x (VU.0%) = — “L‘fﬁ
t (1 - p.7)
S(GR) = FoF+ Raj—g 5@»:%]%55:
1—p6.1
- = 1.0% L
0T + = } +R.6
Jolom§ 2] 4 R
S(F.R) = f.07 + 7 noT g n/cém
1 -G (1 B.7)
= L =5
V@R =f+a L IO
1-p1 ¢ 1—pa



On obtient en recombinant tout

s a i L [AME=HAG
— dmeg 2(1 — F.7)3R2 dmege 1— 373 R
N ’Y ( ﬁ'n) retl N ( /8 ) ret/
présent pour B =0 exige 6 #0
champ statique champ d’accélération

= 171, 5 1
B(T‘,t):E |:ni|Tet/\E(T',t) Y= \/17_762

Le premier terme est le transformé de Lorentz d’un champ purement coulombien pour une
transformation de vitesse ¢

e Le champ B s’obtient de la maniére suivante :

A est colinéaire A la vitesse @ ; il résulte des formules du potentiel que A= (g)AO
— 1 - 1 = 0 — 1 = 10 — 0w —
B=-(ot A)= ~VA (A°%) = - {VA AT+ A V/\v}

c c c
3 l s 0 L s 40 0(T A 7
B=-rot A=-VA(A°V)= — VA" NG+ — A”(V AD)
c c c
Attention : ((t — B) dépend en effet de @ a cause de Ueffet de retard
3 3iifcoE
On a vu o= -0 -
0 i > = 1 o
b B m VAf= ——— (Frn)
amz c 1—/8ﬁ C(l—/@ﬁ)
en combinant
S 1 1 i . A 7 i »
B=-1 . { B S L LM N
¢ 4mep (1 — B.7)2R? L1 — B0 1—-pi ¢ 1-8.i
1 ¢ 1 1 .
- = = (BAT) AP
¢ dmeo (1 — B.A)R c(1 — B.7)
5 q 1 L 3 2
B = — — 1 A | — (1
dmreoe (1 — (.47)3 2 " [ A =P )}
q 1 1 =, . > = > L=
(1 —p.ai) | (B.8)ii = (B.M)B ) — R(B.R) A



R — F — 1 N — 1 — —
B=EYidint oo B= —iAANE= — RAE
4p c cR
= q (n—-p < 1 e . .
E = a approximation statique
4meg R?
- —q 1 - - 1 _. R
B = —-RA(B= V)N —%
dmegR3 ¢ p 4dregc? (g9) R3
avec I’équivalence ¢ al = qv pour une charge et ’égalité 47761002 = Z—g = approximation statique.
On retrouve ainsi B = o) dl A %, la loi de Bio-Savart, a 'approximation statique.

3. Caractéristiques des champs E et B

a) Le champ statique est le transformé de Lorentz du champ coulombien. Cette contri-

bution a E ne dépend que de 3. C’est la méme que pour une charge en mouvement uniforme

A la vitesse 3. Une telle charge ne rayonne pas, et dans son systéme au repos A? = # ,
TEQT

—

A=0.

b) Les potentiels de Lienard Wiechert (2 ¢ fixé) sont donc les transformés de Lorentz
par la transformation L(5) du potentiel coulombien ou f = g . On peut choisir z selon 3
dans le systeme (S’) de la charge U' = q/4wegR', A" = 0 avec R'?2 = 2’2 + 4’2 + 2/? et dans

le systéeme (.S) du laboratoire
A

y

v

> y4
\Y%

U’ q

VI— 32 dmegR'\/1— B2
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avec
!/

Yy =y, 2 =2z o' =T(z — i)

et
F'=1/y/1- 2
R'? =12 [(m —ot)? + (v + 22)/F2}
Il en résulte U = q ot A= BU

47reoé
ol R= [(z —vt)® + (y* + 2%)/T?] 12 et R? = R2(1 — 3%sin?0).
On peut vérifier que R = %(1 — 5.ﬁ)|Tet.

c) La forme des lignes de champs “statiques”

ly Ay
N

T isotropie I
au repos Y
L . 104
E=-VU-- —
c Ot
2
= q 1 = 1/
VU = — — ] VR
dmeg (R’>
- Fqﬁ qﬁ
E =
Ameo R 4me2R3
. 9 p <2 p2
r=0 FE I' — augmenté de ' a y* =R
dreg Y2
1
y=0 E,=-—1_ — — réduit de I & 2% = R?

(ionisation milieux matériels)
Attention : E # —VA. Le champ ne differe de zéro que dans un voisinage étroit de /2.

d) Le champ rayonné

Le champ “statique” (indépendant de B) décroit en 1/R2. On verra qu’il ne correspond
pas a une énergie rayonnée.
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Au contraire, le champ d’accélération correspond a une impulsion et une énergie
rayonnées. Il décroit beaucoup plus lentement en 1/R, et c’est ce qui autorise les ondes

électromagnétiques pour les transmissions a grande distance.
Eaccel X ﬁ/@(ﬁ - /8) - (1 - ﬁﬁ)/@

si 7 = [ : observation selon la vitesse

Epeeor = 0! Pas de rayonnement a ’avant (pour [3’ ~ 1)

si

.3 =0
avec un mouvement linéaire (observation L vitesse)
.3 =0

Eaccel X _/8
= Le champ électrique est polarisé linéairement selon la direction d’accélération quand

on ’observe dans une direction perpendiculaire au mouvement linéaire accéléré.

Exemple : a grande distance d’une antenne

4>
Eaccel
—

\4

=y

4. L'énergie rayonnée

Le flux d’énergie va étre donné par le vecteur de Poynting.

S=—(EANB)= — EA(iNE)
Ho Clo
mais Eaccel .m=0
— ]_ —
S= — (EHn
Clo

On ne considerera que le champ FE,...; dominant aux grandes distances

= en un point donné, la direction du vecteur de Poynting est donné par le vecteur unitaire

de direction R,.; = ﬁ(t — %t’))
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Approximation: y=1; 5 <<1
La puissance rayonnée par unité d’angle solide sera

dP 1 2 -
& e R |Eyeal’= — R? (-2 @A AP
ds? Clio Clo

et en intégrant sur tous les angles solides

Formule de Larmor

62

2 .
pP==: = |7]?
3 47‘(’606

5. Exemples

A/ Charge d’un condensateur

es] /

Ty

wny

U= %0 E2?V varie avec B

dU . dE
a VB

= Comment I’énergie pénetre-t-elle entre les armatures 7 Quelle est la direction du vecteur
de Poynting 7

L’énergie pénetre en réalité par les bords et non pas par les fils.
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On observera que  |B| = 2 ‘%—?‘ (Faraday)

_—
N

A

Résistance et courant

= Flux d’énergie sortant dissipé en chaleur

B/ L’autoaccélération

La formule de Larmor cache une difficulté. Il conviendrait en réalité de spécifier 'instant
auquel la puissance est rayonnée, ainsi que le rayon d’intégration :

Xy

47Teoc3

P(Rt) =2 —© [172]

ret

t'=t—R/c

Cette difficulté devient transparente quand on considere 'impulsion rayonnée :

est associé le vecteur

Densité d’impulsion Py

au vecteur flux d’énergie : S=2>L

(Poynting)

L’expression précédente n’est justifiée en omettant la différence entre t et t' que si © est resté
constant dans cet intervalle de temps : a un instant ¢ donné, ceci suppose que ’accélération
uniforme était communiquée a la charge depuis un temps t’ ~ —oo, ce qui est absurde, la

particule ayant alors une énergie infinie.

La méme remarque vaut pour 'impulsion rayonnée

P=e (ﬁ) /OR dR / Q) ((ﬁ.ﬁ)ﬁ—ﬁf
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qui diverge apparemment a grand rayon, conformément a la remarque précédente.

Le rayonnement considéré modifie I’énergie et I'impulsion de la particule : il équivaut donc

a une force de freinage associée a I’émission de rayonnement :

—

—kf k<0

La conservation de I’énergie imposera

Fopq Tdt = — dt
a-v 3 47reoc3 /|v|

énergie fournie par les forces de freinage

to

t1

Pour un mouvement
e périodique (to — 1)
e ou tel que v(t1) = 0(tz) =0

to
. 2 -
/1 Omm———f;36>.6ﬁ:0
t 3 4mepc

ce qui suggere l'identification

- 2 .
< Froqg >= = v
rad 3 4megc?
L’équation
mi = ﬁewt devient alors
. .. = 2 e?

m(x — 70) = F, T=— ———
( ) et 3 4megmce?

l

m(¥ — 70) = Fopy (Equation mécanique non standard)

Cette équation est absurde ! Elle a une solution “divergente” méme quand ﬁemt =0:

outre ¥ =0

ilya v=a et/T méme pour Fo; = 0!
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La solution générale de 1’équation différentielle est la somme de la solution de 1’équation
sans second membre (les précédentes) et d’une solution particuliére de I’équation avec second
membre. Cette derniere est facilement trouvée par variation des constantes :

F
b=e/Tut) = d=-——et"
mT

La constante d’intégration

t c
u= e/T/ e~ t/T F(t)dt'

T t

sera choisie de maniere a retrouver F,,; = m7 a la limite e2 — 0 (7 — 0).

Il faut alors choisir ¢ = co. On considere que cette solution particuliére a des propriétés
physiques raisonnables :

m U(t) = I e F(t + 7s)ds

6. Radiations synchrotron

La radiation synchrotron est le rayonnement émis par les particules accélérées dans un
champ magnétique :

e pulsars (étoiles neutron)
B ~ 103G
c’est le signal électromagnétique émis par les électrons accélérés dans ce champ qui a permis
la détection des pulsars. (On ne comprend pas les détails du mécanisme d’émission).

e trous noirs et jets stellaires (quasars) analogues au cas précédent, a plus grande échelle.

o Accélérateurs circulaires :

— le rayonnement synchrotron peut étre un phénomene parasite (I’énergie rayonnée doit
étre compensée !) qui limite ’énergie maximale des accélérateurs.

— inversement on peut s’en servir pour analyser les solides ou milieux condensés aux
courtes longeurs d’onde.

a) Formule relativiste

P = [i]?

T3 dmegcd
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On va chercher le scalaire de Lorentz se ramenant a cette expression a la limite non
relativiste. On tire partie du fait que (AE, AP) est un 4-vecteur. On montre que :

P = — est un scalaire de Lorentz et on va chercher le scalaire de Lorentz quadratique en

dt
dp/dt se ramenant & la bonne limite non relativiste

2 €2 <dp“ dpu>

P==
3 m23 dr dr

1

dr = dt/v = temps propre avec y =
V1 — 32

On peut montrer que cette extension relativiste est unique. (On peut la retrouver par un

traitement exact de Fgccer)-

Jdptdp, (0PN (ENE T d g
dr dr  \dr cdt Hal ¢c E
) 2
E 2
() pdE_ 2 dp
T dr dr  cp dr
2 dy v dv

Mais dans un accélérateur circulaire

d A
P P perte d’énergie par tour

dp
= w d’autre part — = —
7 e TN

dr

La variation de p liée a la rotation est >> variation d’énergie.

En effet

d|]5]/dt_<Ap> 1 Ap 1

dp/dt] — \ p wAt ~ p 2m

Pour une rotation a vitesse constante ou Ap/p est la perte relative d’énergie par tour, qui

est tres faible
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[p] = ympc
2 e’ 2 2|22
P:§47r60m2037w 7
2 e’ 4 272 2 2
P:§4W60m203’ywﬂcm

2
_ 2 q 2 2 4
P_g ﬂeocﬁw’y

L’expression exacte tridimensionnelle correspondante est

2

2 e > - o
p_=Z 6 2 _ (G A B
3 Tmege | LB —(BAB)
mais w = cf/p p = rayon
_2 2,4
3 471'6 p z B

Pour des particules ultrarelativistes

B ~ 1. Lorsque p est fixé (cas d’un accélérateur) la puissance rayonnée est proportionnelle
a v* c’est-a-dire & la puissance quatrieme de I’énergie.

— radiation intense

A LEP E = 45 GeV (100 GeV) accélérateur d’électrons

R ~ 4 km
JE (MeV) ~ 100 MeV /tour

Formule générale

E* GeV

SE(MeV) ~ 8.85 1072
pm
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a énergie donnée

E .
¥ = —>5 = les électrons rayonnent beaucoup plus
me

— au SSC (20 TeV) la radiation des protons aurait été une source importante de réchauffe-
ment des aimants et de désorption dans les parois du tube

— a plus basse énergie : ESRF (Grenoble) source de faisceaux X durs (— keV).
b) Notion de fréquence critique

Une charge en mouvement ultrarelativiste va émettre un rayonnement. On aura deux
expressions tres différentes pour 3 paralleles ou perpendiculaires a (3.

e Accélérateur linéaire ou 5 parallele a 5
At dp (DN (A0 Ly ()2 L (A0 (dp)
dt dr  \dr dr) dr) — ~2 \dr)  \dt

p_2 @ (d\
3 m2¢3 \ dt

L’application numérique montre que ces pertes sont tres faibles.

e Accélérateur circulaire

dp* dp, dii\ 2 2 €2, (dp
_W W (2P p== o
dr dr (dT TP T3 s T

Pour une accélération de module donné, 'accélérateur transverse donne une radiation
+? fois plus grande.

e On négligera 'accélération longitudinale

2 2
— le rayon de courbure sera p = :T ~ 57

— = —Wr =a V| =Tw
dt?

— la distribution angulaire est concentrée dans un cone étroit

(92)1/2 —

= |+
&
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AL

- impulsion de durée AL
- intervalles d’émission Ty = Lo/c

L’observateur verra une impulsion, breve ouverture angulaire % — la distance parcourue
par la particule pendant I'impulsion est 5.

At = % pour le temps d’illumination.

Pendant At, le front de radiation parcourt D = 7%. Pendant le temps At, la particule

s’est déplacée de d = % : le front arriére sera & la distance AL =D —d = (%) % = 7%.

La longueur spatiale est AL.

L’intervalle temporel %AL =. L’analyse de Fourier comportera des fréquences jusqu’a

oo C () e
c=ar = \,)7

Pour un mouvement circulaire % = wo.

Application :

10 GeV, wp = 310°%/s

we ~ 2,410 /s = rayons X 16 keV.
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