VIl - Mouvement des charges

1. Les équations fondamentales

On considere une particule placée dans un champ électromagnétique déterminé :

i b
L=—-m\[1-— S=[ CLadt
C tl

7 = di/dt

a) Particule libre :

On vérifie en utilisant le temps moyen que S est un invariant de Lorentz : dt = ydr

S:/ 'VEdT:/ —mc? dr

Le mouvement d’une particule libre :

d (oL oL d
dt 8q1 qu N dt

b) Interaction :

L = —mc®\/1—-v2/c2 + Lins + £ (champ) mais on négligera £ champ, c¢’est-a-dire le
rayonnement des particules, et son action rétroactive sur leur mouvement.

On retiendra donc les deux formes équivalentes :
1 - —
Sint = Lint dt [/int = —q U- EU .\

:/ch L:—qAM<‘?—T“> A“:(U,ff)

or
ov*

e Moment conjugué : P; = = ymv; + qA;
Plus généralement Pt = mut + qA*
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e Equation du mouvement :

i () = (o 240
LA

oL B oUu g o (v
ox; q@:z:, c  0x;

—

V(. A) = (0.VA+ A V@) +TANVANA)+ ANV AD)

1)

mais VAT=0 et V(#) =0

d — —

— = — v. A

AR t+(” V)

d - 1 0A 4
il - _ -7 iA B
dt(’YmU) (I(VU+C t>+qv/\

En notation relativiste :

dut
—:gF‘“’uV FHY = 0oF AY — 9" A¥
dr c
A : 3 8 . IU/ l‘“j
(Attention aux signes 0, = ok ot = gh a,)
2. Mouvements simples
a) Particule dans un champ magnétique fixe
d—) . —
P nB g= £
dt ym
dp ,
_ 7,5
dt ym
se compare a
ar . .
7 =wWAT vecteur de rotation & fixe
> 5,2
p tourne autour du champ magnétique a la vitesse angulaire & = —g—g = _q%c
— d_)
e W0 = p=cn

— d 5 e
e B- d]t)—o = |p|||:Ct

= |10L|:,/pz—10|| cte = v, = ,%,)—m:Rw:C’te

lpL| =pL =ymv, =¢BR
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b) Dans un champ (E, B) constant, E//B

voir Landau-Lifshitz (théorie du champ)

A
y

dp,
dt
dﬁt = qﬁt A g

= |pi| = C*

&= \/m204 + (P} + P2 + P E*?)c?

E = \/Sg + q2E2t2 2

dz cp, c2qFt
— =V, = =
dt £ VEZ + (2B 2
1 E(t) cpy
— = &2 4L 202 F242 — _ Pt
z qE\/ o T cq E T B
di

:qEz = Dz :th

i—pe eV = iqBv = iqBpe /€
dyp qBc? qBc?

dt

it~ £ VEZ + PR

)

qEct

Bc
Y= fArg sh ( Z
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¢) Champ magnétique variant lentement

i/ Méthode directe (B variable dans le temps)

On considere un mouvement plan avec B L p

dp - -
— =q(E+UANB
o = 4(E+TAD)
. 104 . ¢ o
EFE=——— A= =-(BAT
c Ot 2( )
. 10B
E=———NAT
2ot
_'@)—_g 8_5/\7_" ® N
P = 72\ o b
. . dr L . qB
mais p=ym — =ymwAr avec w=——
dt ym
en utilisant p=qBr
1 dp? q OB 5 o 0B2
- _ 4,177 Br — =
2@ T2 e [ IPTECT
2 1 dp? 1 OB
mais r? = P :>—£: it

q2 B2 p2 dt B ot

p
b = -
7TqB
d®
— =0
dt

Le flux est conservé :
e Lorsque l'induction magnétique augmente, le rayon de la trajectoire projetée diminue.

_ 4B 57 |=qbr=41 = C2
ew="p et 7L = qBr = = =B

o . 1 )
e p,| varie comme —= et n’est pas constant.
28 v B

it/ Invariants adiabatiques

On démontre en mécanique que si les parametres extérieurs d’'un mouvement varient lente-
ment, les invariants “adiabatiques” sont conservés pour les coordonnées cycliques (périodi-

ques).
Ces invariants sont les intégrales :

Ji = jgpi dg;
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p; est le moment conjugé de la variable ¢; du lagrangien p; = 9L/9¢;

Application : J = | p;. dl doit étre conservé lorsque B varie lentement.

7L = composante de g L B

- B
J:/qﬁ'ymwrzd(/ﬁ—kg?{/l.ﬁ w=-L
c ym
= 27r’ymwr2+q/ B.iido
s
= 2mymwr? — ymwrr? = Tymwr?
J=nymwr? = —q Brnr? = Ot
Exercice : trouver 'approximation faite !
On a clarifié 'approximation de “variation lente” : suffisamment lente pour laisser

inchangée la relation entre le rayon de courbure r et p; .

On voit que dans un champ magnétique variant dans l’espace ou le temps, I'impulsion
transverse n’est PAS conservée :

e ce sera le principe du Betatron.

d) “Bouteille magnétique” (confinement des plasmas)

>
?;%3§%$::
> 7
j:j;ﬁﬁtzf
B

Configuration de champ axial
le flux encerclé est constant.

ﬁ||2 +p1 =P (champ magnétique pur)

o) L, 5, B
BE B0 TR Ee

cette relation équivaut au mouvement dans un potentiel mécanique.

U—m P B(»)

B(0)
02
Si B(z) est assez grand : 17”2 s’annule pour la valeur de z solution de B(z) = B(0) % ily
b1

a confinement, seule une particule ayant composante pﬁ tres grande s’échappera du volume
de confinement.
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e) Lentille quadrupolaire

Forces pour une particule positive dont la vitesse est indiquée par ()

- Focalisation horizontale

- Défocalisation verticale

e Les pieces polaires : hyperboles équilateres.
e Fer non saturé = lignes de forces hyperboliques.
e Potentiel vecteur A, = Gay? —a?)

Ap=A, =0

1 0A,
Bm = — —
c Oy v

avec des composantes

1 0A, normales continues
By, =—- = ax
¢ Ox

dz/dt = v

ymi = —quox " +k*r =0 o .
— dérivées par rapport a z

ymij = quay y"' —ky=0
k? = qa/ymv k > 0 ymv = qBp
2_ @ :
k* = p . rayon de courbure
Bp

On observe l'effet de la focalisation en z (oscillation sinusoidale) et de la divergence
exponentielle en y. On définit k> = «o/Bp, cBdt = ds avec 3 = %, et on note s la
coordonnée longitudinale le long de la trajectoire :
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1 . .
T =1z cosks+ P zq sinks x’ dérivée

' = —k xo sinks + zj, cosks par rapport a s

1 .
€T Zo cos k{ + sin k/ Zo
(35/) i (356) (—ksinkﬂ cos kt > <m6>

ou £ est longueur du quadrupdle, (z, z’) décrit la position d’une particule dans 1’espace des
phases (plus précisément (x, y, z', y)).

Soit

Pour la coordonnée y
1
Y M Yo ch k¢ +sh k¢ Yo
= — k
(y’) b <y6> (kshke chkﬁ)(yé)
Lo g L S
ch¢:§(e +e %) sh¢:§(e —e %)

pour de petites longueurs, Mg et Mp sont assimilables & des lentilles minces (kf) — 0,
=0, k20 #£0

A
_
X0 f z
v
Zo T 1 0 To
—* o k20 1) \ 0
1
= k==
S
1 0
Mg = 1 pour une lentille mince
—=< 1

i

On observe la conservation des surfaces d’espace de phase :
det(M) = ch*(kp) — sh*(kp) = 1
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3. Le Théoreme de Liouville

q.:%_if q<t>—qU+/0 aap—%dt
. aH t
b= p<t>=p<0)—/0 aa_l;[dt

On considere le changement de variable :

p(0), ¢(0) — p(t), q(t) pour une distribution dans l’espace de phase :

/dpo dCIo:/

Théoréme :
dp(t) Ip(t)

D{ po, o)
& dp(t) dg(t) = / J dp(t) dg(t)
D(p(t)v Q(t))

7 D), 40) -
PR Oq(t)  Oq(t)
dqo 0qo lt=0
en effet : pour p(p()a qo, t) et q (p0> qo, t)
Op(t) =0 et 9q(t) =0, d’autre part :
dqo 0 Opo 0
d <3p(t)> 02H <8p(t)> - /t 0’H
dt \ dq0 /|, dpodqo dpo 9po9qo
4 (ﬁ) _ 0*H (@) _ L[
dt 8])0 0 8]?08(]0 8(]0 3]903610
d(J71) 0’H O’H
dt Opodqo Opodqo

Plus généralement, on considere le mouvement du fluide dont les particules ont les coor-
données (p;, ¢;) dans U'espace des phases :

q'iz 8H/8p1:V

Soit V le vecteur (V;, F)

Z 0’H 0°H —0
Di 8]71 8% 8]718(]1
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Le volume d’espace de phase se conserve dans le mouvement. La conservation du volume
équivaut en effet & V.V = 0.

Démonstration : Soit v(¢) le volume occupé a l'instant ¢ et D(0) le domaine considéré a
I'instant t = 0 (de volume v(0))

mais,

qi(t) = qi(0) + ¢ t x = (g, i)
pi(t) = pi(0) +p; t z(t) = z(0) + it

8$z(t) .
dz;(0) O 1

81‘]'

(t — 0)

det |1+ At| = 1 + T (A)

Une conséquence importante du théoreme de Liouville est qu’au cours du mouvement un
systeéme passe (en général) au voisinage de tous les points de I’espace de phase.
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