VIl - De I'électromagnétisme aux rayons

1. De I'onde aux trajectoires

(voir par exemple M. Born et E. Wolf, Principles of Optics, Pergamon Press (1965)
V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer (1989).)

A/ L’iconale (icone= image)

On a vu que les champs électriques et magnétiques obéissent a une équation de propagation

dans un milieu d’indice n variable
n? 0 E
<—aT B A) <B> (1)

en considérant I'une des composantes notées f

282 B
(2’—2@—9 f=0 (2)

On recherchera les solutions monochromatiques f = e=*?* f. La fonction spatiale f(7) vérifie

7 03)

On sait que si n = ¢**, la solution est une onde plane du type e™*-% avec [k| = 2. Pour

un indice lentement variable a 1’échelle de la longueur d’onde, ce qui est le cas usuel, on
recherchera la solution de I’équation précédente sous la forme f = a e™*¥. Le gradient de f
est de la forme Vf = (Va) e*¥ + ik, (VS) ae*¥ et le laplacien A = V.(Vf)

A = (Aa)e oV 4 2ik, (Vip).(Va) eFe?
— k2 (VS)? a eV + ik,ASa etFo?

L’équation (3) se met sous la forme

2
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w? — — k2 (V)2 + 7“ + iko A + 2ik, (WGV“> =0 (4)
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En divisant I’équation (4) par %
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+iAAp] =0

L’expression entre crochets est négligeable lorsque A\ — 0 si a et i varient lentement a
I’échelle de la longueur d’onde. La fonction v vérifie alors I’équation de I'iconale

(Vih)? = n?

les surfaces 1 = ct® sont les surfaces d’onde.
B/ De l'iconale aux rayons : le vecteur de Poynting

On va revenir aux équations de Maxwell dans une région ou la solution est proche d’une
onde plane au sens précédent

—

E = &(F) e*? (™
B = b(F) ehov ()

Ces paramétrisations étendent au cas vectoriel 'approximation scalaire du paragraphe pré-
cédent. Dans le milieu diélectrique quasi-homogene ou on néglige le gradient de &,

V.E=0= V.&F) + ik, &V(1)) =0
V.B =0= V.b(7) + ikob.V (1)) = 0
et lorsque A — 0
AV.e<<1 vy =0
— — :> - =
AVb << b.Vy =0
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Ho 20
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2180
Mais dans le diélectrique d’indice n
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— =—iwE=— (VAB)
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VA @) f) = f Va(r) + VI AE(r)
(&(r) e*e¥) = etke¥ Y, @+ ik, Vip A E(r) eFo?
(B(r) o) = koS b + ik, Vip A b(r) eiho?

et comme \,|Ve| ~ A|VD| ~ 0

—iwe = T» ik, Vi) A b

—iwb = —ik, VY A E

Mais
gV =0 &*é=2<|é >
et
ko 1
w_c
<§>=— - \Y
5 2MCIé] 0

c? ; 1|ﬁ,|2 U
_ Y et = _u
i n?2 2 ¢ 2¢
1 U > c?
c e n4c
<i>=u (2) (V)
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Compte tenu de I’équation de l'iconale (5) %|§¢| =1.

Dans l'approximation de 'optique géométrique, ou la longueur d’onde A — 0, la densité
d’énergie se propage a la vitesse ¢/n selon la direction normale au front d’onde. Le gradient
61/) est en effet perpendiculaire & la surface d’onde 1) = C*®.

Les rayons de 'optique géométrique sont les trajectoires orthogonales aux surfaces d’onde

= C.

C/ La trajectoire des rayons

Si 7(s) est la position d’un point en fonction de abscisse s : di" = £ ds, ’équation des rayons
précédemment trouvée g—’: = % V1) permet d’obtenir I’équation différentielle des trajectoires
des rayons dans un milieu d’indice variable

i ()~ ()

P+AW
Y+2AW
P ,

d d -
Ts (nT) = Ts (V)

= 7V (VY)

= (V9).V (F9)

1 = - 1 = o
:%V(WWﬁ:ZﬂMﬂ:Vn

L’équation des rayons dans un milieu d’indice variable est
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D/ Application a la réfraction

Par projection sur ’axe z

On retrouve la loi de la réfraction.
2. Le principe de moindre action
A/ Rappels de mécanique Hamiltonienne
1. Les équations de Hamilton-Jacobi
Pour un systeme décrit par des coordonnées généralisées q; et leurs vitesses ¢;

3 lagrangien L(q;¢) et hamiltonien H(p, q)

avec les équations d’Euler-Lagrange

d 0L 0L
el _ - 10
it 94 O (10)
et de Hamilton

dpi . _BH

dt N 8q¢

qu . oOH

dt N 8p¢

Newton (13 = m7y) <= Euler-Lagrange <= Hamilton

a) Les équations d’Euler-Lagrange résultent d’un principe de moindre action
/ p.dqd— H dt est extrémale
v

o1



pour toutes les courbes 7 qui connectent ¢(to) = qo & ¢(t1) = ¢1 dans l'espace (P, q,t)

b) Si H ne dépend pas du temps les trajectoires dans I'espace des phases sont les extrémales
de [p.d7 avec = qo et = ¢1 aux extrémités. De manitre équivalente.

Parmi toutes les courbes ¢ = (1) connectant qy et ¢y et telles que H (%,cf) = h (con-

stant), la trajectoire des solutions de

dp __0H di _0H
dt 0

est une l'extrémale de l'action

c’est le principe de Maupertuis.

On définit la fonction d’action

Sqoto (q_: t) = fy L dt

4>
(q’, 1)
>,
a,t
extrémale

—>»
(9> tp)

ou 'intégrale est prise le long de 'extrémale. .S obéit a ’équation de Hamilton-Jacobi a qq, to
fixé

dS = p.dg — H dt,
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Pour un systeme conservatif d’énergie donnée, H ne dépend pas du temps, et % =—-F

Exemple : 5~ >° (@)2 +U(") =FE

2m

(15)
B/ L’action réduite et le principe d’extremum spatial en mécanique
Nous avons vu que parmi toutes les courbes connectant deux points ¢y et ¢, et telles

que 'Hamiltonien H(p,q) = H (g_fzi’ q) = F, les trajectoires des équations de la dynamique

p= —%—ZI q= %—ZI sont les extréemales de ’action réduite :

. oL
/ ﬁ.dq_’:/ p.q dt :/ <—) .q dt
v v v \ 904
(Principe de moindre action de Maupertuis).

L=T-U = —,:ﬁ:mé_':m

Mais ¢ = v et E =1 mv? + U(7)

(E-U)

2
V=)
m

2 q1
S =1/ / VE —U dl est un extremum pour les trajectoires réelles
m Jz
do
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Lorsque le systeme est conservatif, I’action

Sz =J, VE-U dt

a un extremum pour les trajectoires réelles.
3. Le principe de Fermat

A/ Le chemin optique

Les rayons ou “trajectoires” normales aux surfaces d’ondes vérifient I'équation (5) (V)2 =
n?(7). On peut considérer les rayons comme représentant le parcours de “grains de lumiere”
fictifs * obéissant a 1’équation précédente.

Il se trouve que cette équation est identique a 1’équation de Hamilton Jacobi (15) avec
I’équivalence

n? =2m (E —U(r))

. . (16)
iconale ¢ +— S action

Comme I’équation de Hamilton Jacobi avait pour solution les trajectoires extrémales de
I’action S

S:/Ldt avec L=T-U
v

les trajectoires des rayons optiques obéissent également a un principe d’extremum. On
I’obtient en partant du principe de Maupertuis

qu/\/E—Udeoc/\/ﬁde
Y Y

d’apres ’équivalence précédente. On aboutit ainsi au Principe de Fermat :

=

Le chemin optique f;f(” n df d’un rayon du

point q1 au point @5 est plus court que tous les chemins

voisins du trajet effectivement suivi

* La lumiere peut effectivement étre considérée comme ayant une nature corpusculaire et
formée d’un ensemble de photons (réels) a 1’échelle quantique. La discussion menée ne
présuppose PAS l'existence de photons.
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B/ Les trajectoires a partir du principe de Fermat

sz/7 ndﬂchn(F(t)) (%) dt

cette action réduite peut ainsi étre considérée comme résultant d’'un Lagrangian “optique”
— (7 ) AL
L=mn(rt) &

d oL 0L

05=0= T 5% g

=0

d
— — n 42 +a: +:1:
dt ( m1+$2+x3) 1 2 3

en introduisant le vecteur tangeant unitaire

T

Vi + 13+ 13

T =

on retrouve bien I’équation (8)

La relation n7 = V¢ permet de démontrer I'invariance de | qih nT.dr vis a vis du choix du
o
chemin v ent ¢, et ¢1. Le long d’une courbe fermée, on a en effet :

§ nFdi = [4 Fot (Vip).h do =0

olt h est la normale unitaire puisque rot (Vip) = 0.

Py o L .
/ Pf nT.di est indépendant du chemin suivi

(Pour des rayons différents allant de P; & P)

Pour un chemin fermé ¢ I'intégrale §c nT.dr est appelée invariant de Lagrange.




Ce résultat est I'analogue optique du théoreme de Liouville avec I'identification p'=n 7.
- L’écoulement de I'espace de phase préserve en effet les intégrales ¢ p.dg— H dt.

- pour des courbes a t constant et fermées

fﬁdcjz// dp' A dq
¥ o

est préservé dans 1'écoulement de l’espace des phases (lien avec Liouville).
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