
V - Propagation dans les milieux matériels

1. Equations de Maxwell dans les diélectriques Isotopes

D/1 Le courant effectif

• L’équation ∂ �B
∂t

= −�∇ ∧ �E, qui ne fait intervenir que les champs �E et �B reste inchangée
dans les moyennes locales qui font passer des champs microscopiques aux champs macro-
scopiques.

• �∇∧ �B = µ0
�J + µ0ε0

∂ �E
∂t est modifiée :

On a vu que la magnétostatique des milieux matériels conduisait à définir
�B = µ0( �H + �M) avec �∇∧ �H = �j.

�∇∧ ( �B − µ0
�M) = µ0

�j
vrai

+ µ0ε0
∂ �E

∂t
(1)

mais cette équation est fausse. En prenant la divergence compte tenu de div (−→rot) = 0

0 = ∇ ·�jv + ε0
∂�∇. �E

∂t

Dans un diélectrique

�∇. �E =
ρext

ε0
−

�∇. �P

ε0

∇ ·�j + ε0
∂�∇. �E

∂t
= ∇ ·�j +

∂ρext

∂t
− �∇.

∂ �P

∂t
= −�∇.

∂ �P

∂t
�= 0

Le premier membre étant nul par continuité.
La solution proposée par Maxwell est de modifier l’équation (1) et de remplacer �j

vrai
→

�j
vrai

+ ∂ �P
∂t : une collection de dipôles variables crée un courant.

Le terme ∂�p
∂t sera le courant “de polarisation”

�∇∧ ( �B − µ0
�M) = µ0

�j
vrai

+ µ0
∂ �P

∂t
+ µ0ε0

∂ �E

∂t
(2)

De manière équivalente, on peut aussi revenir à l’équation dans le vide avec

�∇∧ �B = µ0
�jt + µ0ε0

∂ �E

∂t
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(3)
Le courant total dans le diélectrique est

�jt = �j
vrai

+
∂ �P

∂t
+ �∇∧ �M

D/2 Les équations avec ε et µ

(i) �∇. �E =
ρext

ε ε0

(ii) �∇. �B = 0

(iii)
∂ �B

∂t
= −�∇ ∧ �E

(iv) �∇ ∧ �B = µ�j
vrai

+ µε
∂ �E

∂t

D/3 Si l’on néglige les effets magnétiques dans un conducteur : �j = σ �E

(�∇∧ �B) = µ
[
σ �E − iωεd

�E
]

pour une onde plane de fréquence ω

(�∇∧ �B) = −iωµ

[
εd +

iσ

ω

]
�E

On voit que tout se passe comme si ε avait acquis une partie complexe
iσ

ω
avec Re(ε) = εd.

En identifiant avec l’expression microscopique de la page 13 :
σ = ραcq

2/ε0mγ (où αc est la fraction d’électrons libres).

En l’absence de charges et de courants externes :

�∇ · �E = �∇ · �B = 0

∂ �B
∂t

= −�∇ ∧ �E

εµ ∂ �E
∂t

= �∇∧ �B

εµ ∂2 �E
∂t2

= �∇∧
−→
∂B
∂t
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εµ
∂2 �E

∂t2
= − �∇∧ (�∇∧ �E)

= − �∇(�∇. �E) + ∆ �E = +∆ �E

On retrouve l’équation de propagation

εµ
∂2 �E

∂t2
− ∆ �E = 0

εµ
∂2 �B

∂t2
− ∆ �B = 0




et de même

la vitesse de phase est alors vϕ =
1√
εµ

Les ondes planes sont du type

�E = −→
E0 ei(ωt−�k.�x) avec k =

ω

vϕ
.

Par transformée de Fourier

−εµω2 + k2 = 0

Plus généralement, la décomposition de Fourier :

�E(�x, t) =
∫

d3k �E(�k) e−i(ωt−�k.�x) avec ω = kv

et
�k.�E = �k. �B = 0 (divergence nulle)

�∇ ∧ �E = i

∫
d3�k �k ∧ �E(�k) e−i(ωt−�k.�x)

∂ �B

∂t
= − iω

∫
d3k �B(�k) e−i(ωt−�k.�x) = −�∇ ∧ �E

�B(�k) = 1
ω

�k ∧ �E(k) = 1
v

(
�k
k

)
∧ �E(�k)

�E = �ε1E1 +�ε2E2 �ε1.�k = �ε2.�k = 0

E1, E2 complexes ⇒ polarisation elliptique en général.
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2. Vitesse de groupe

On a donné pour les ondes planes la relation entre ω et k : ω = kvϕ = k√
εµ .

Comme ε et µ sont eux-mêmes fonction de ω, cette relation est de la forme ω = ω(k).

Pour chacune des composantes du champ, on aura de manière générale :

Ei(x, t) =
∫

Ei(�k) e−i[ω(k)t−�k.�x]d3k

• Pour une onde monochromatique :

Ei(�k) =
1

(2π)3

∫
Ei(�x, 0) e+i�k.�x d3�x

Ei(�x, t) � e−i(ωt−�k0.�x) Ei(�x, 0)

Ei(�k) � δ3(�k − �k0) Ei(�x, 0)

• Pour un signal d’extension spatiale finie à un instant donné, ce qui est toujours le cas en
pratique ; ce sera une fonction de largeur ∆k.

Pour des gaussiennes ∆x ∆k ≥ 1
2 (voir la démonstration des relations d’incertitude en

mécanique quantique).

Si Ei(x, t) est très piqué au voisinage de k0 :

ω(k) = ω(k0) + (k − k0)
dω

dk

Ei(x, t) � e
−i

[
ω(k0)t

] ∫
Ei(�k0)e

−i

[
(ω − ω0)t − �k.�x

]
d3�k

∼ e
−i

[
ω(k0) − k0

dω

dk

]
t ∫

Ei(k)e
−i

[
dω

dk
t − �x.�n

]
k

d3k
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où �n = �k/k

Ei(x, t) ∼ e
−i

[
ω(k0) − k0

dω

dn

]
t

Ei

(
x − dω

dk
t, 0
)

Le champ se propage sans distorsion à une vitesse

vg =
dω

dk

vg est la vitesse de groupe qui diffère de la vitesse de phase 1/
√

εµ. Le vecteur d’onde k
s’exprime en fonction de la fréquence ω : ω = kvϕ = k c

n(k)

n =
√

εµ

ε0 µ0
> 1 presque toujours

Il en résulte :

vg =
dω

dk
=

c

n + ω
dn

dω

Au voisinage des résonances, la vitesse de groupe calculée dans l’approximation précédente
devient > c. Comme ω(k) varie rapidement, les approximations du 1er ordre cessent d’être
acceptables, et la propagation du “signal”, ne viole pas la relativité : la notion de vitesse de
groupe, compte-tenu des déformations, perd son sens.
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avec

n =
√

εµ

ε0µ0
vϕ =

1√
εµ

vg =
dω

dk
=

c

n + ω
dn

dω

k = n
ω

c

3. Milieux diélectriques anisotropes

Rappel des équations de Maxwell en milieux matériels pour une onde plane (ω,�k)
avec �k = ω�n

c :

�∇∧ �H =
∂ �D

∂t
− iω �D = i�k ∧ �H

�∇∧ �E = −µo
∂ �H

∂t
iµoω �H = i�k ∧ �E

�D = −
�k

ω
∧ �H =

−i

µo

�k

ω
∧
(

�k

ω
∧ �E

)

�D =
1

µoω2

(
k2 �E −

(
�k · �E

)
�k
)

On définit le vecteur �n par

�k =
ω

c
�n

Di = εo

(
�n2Ei − ni(nkEk)

)
mais

Di = εoεijEj

La compatibilité des deux équations impose :

det |n2 δik − nink − εik | = o

Equation de Fresnel

Si les 3 valeurs propres de εik sont ε1, ε2, ε3 cette équation devient, dans le système des
vecteurs propres.

1 = n2
1

n2−ε1
+ n2

2
n2−ε2

+ n2
3

n2−ε3
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Dans une direction donnée, on trouve 2 solutions pour l’équation des indices qui est quadra-
tique en n2. Les solutions définissent la surface des indices :

n2(ε1n2
1 + ε2n

2
2 + ε3n

2
3) − [n2

1ε1(ε2 + ε3) + n2
2ε2(ε1 + ε3) + n2

3ε3(ε1 + ε2)] + ε1ε2ε3 = 0

Les rayons lumineux ont la direction du vecteur de Poynting �S = �E ∧ �H

�S =
1

cµo
E2(�n − (�n.�e) �e) |�e| = 1

�E = | �E|�e
�S a la même direction que la vitesse de groupe �s = �∇k(ω), et est ⊥ à la surface des indices
en �n.

4. Propagation dans les conducteurs isotropes(effet de peau)

−→
∂D

∂t
= �∇∧ �H −�j �∇. �H = 0

−→
∂H

∂t
= − 1

µµo

�∇∧ �E �∇. �D = 0 ⇒ �∇. �E = 0

�j = σ �E �∇.�j +
∂ρ

∂t
= 0

σ(�∇. �E) +
∂(�∇. �D)

∂t
= 0

σ

εεo

(
�∇ · �D

)
+

∂

∂t

(
�∇ · �D

)
= 0

Si le milieu n’est pas neutre, la densité de charge décroit exponentiellement avec le temps
caractéristique

1
τ

=
σ

εεo
∼ 1019 → τ � 10−19s

⇒ on peut toujours supposer que ρ = 0 dans les conducteurs (à l’intérieur !). La relation
�j = σ �E ne s’applique pas à la surface, où la densité est finie. (en général)

⇒ �∇. �E = �∇. �D = 0

−µµo
∂

∂t

(
�∇∧ �H

)
= �∇∧

(
�∇∧ �E

)
− ∆ �E

∆ �E = −µµo
∂

∂t

(−→
∂D

∂t
+ �J

)
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puis

εεoµµo
∂2 �E

∂t2
− ∆ �E = −σµµo

∂ �E

∂t

de même

εεoµµo
∂2 �H

∂t2
− ∆ �H = −σµµo

∂ �H

∂t

(
n2

c2

∂2

∂t2
− ∆

)(
�E
�H

)
= −σµµo

(
∂ �E
∂t
∂ �H
∂t

)

(
−n2ω2

c2
+ k2

)
�ε = iωσµµo�ε

pour �E = �ε = e−i(ωt−kz)

k2 =
n2ω2

c2
+ iωσµoµ

� εoµoω

(
εω +

iσ

εεo

)
avec µ ∼ 1

Pour de bons conducteurs le terme
iσ

ωε0
domine dans la plage de fréquence :

ρ ∼ 2 10−8Ωm σ =
1
ρ

=
1
2

108 (Ωm)−1

σ

ωε
>> 1 ⇒ ω << 10−19 s−1

Dans toute la gamme de fréquences usuelles, la relation est vérifiée pour les conducteurs.

⇒ k2 = i σ µ ω = i σ µr µ0 ω

k =
√

iωσµµo =
1 + i√

2
√

σµµoω

k =
1 + i√

2

√
2π σ µr µ0 ν pour un conducteur non magnétique

L’atténuation variera comme e−Im(k)z

= e−z/δ avec δ =
1

Im(k)
=

1√
π σ µ0 µr

=

√
ρ

π µ0 ν = δ
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Pour le cuivre :

ρ = 2 10−8 δ =

√
2 10−8

4π2 10−7 ν
(MKSA)

δ ∼ 6cm√
ν(s−1)

Aux fréquences optiques :

ν ∼ 1015 δ =
6cm√
1015

× 104µm

δ = 10−7 × 6
3

104cm

δ ∼ 1
2

10−3µm

Aux fréquences Radio :

ν ∼ 108 δ =
6cm

104
= 6µm

A basse fréquence :
ν ∼ 50HZ δ ∼ 1cm

il est très difficile de se protéger
contre le bruit à 50 HZ

Pourquoi le courant de 50HZ dans les fils n’est-il pas atténué ?
Pour une onde plane dans le vide

�∇. �E = 0 ⇒ �k. �E = 0

�E ⊥ direction de propagation.
Alors que pour un courant 50HZ, le champ est parallèle à la direction de propagation (et

à celle du courant !).

Dans un fil électrique et dans un guide d’onde �E a une composante longitudinale et c’est
précisément cette composante (dominante) qui nous intéresse dans le transport de l’énergie
électrique.
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