IV - L'onde plane

1. Equations de Maxwell

Dans le vide :
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Toutes les composantes vérifient 1’équation des ondes avec la célérité c,

eo,uocz =1

e Par transformée de Fourier = (“0’—22 — E2> V(w, k2) = 0.

Pour une onde monochromatique

V=1, o~ i(wt—k.7)
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Bien entendu, on utilise Re(V)

Par superposition, on obtient la solution générale

c

2 7o — =
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V(z,t) = [d*7 [171 (71, .2 — ct) + Vo (i, A.Z + ct)

en sommant les 2 contributions £k = + w/c.
Solution générale

Dans un milieu matériel, ¢y, po peuvent étre fonction de la vitesse angulaire w

La solution monochromatique pour E et E(a‘:’, t) est
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E et B sont L & k : onde transverse.
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ot

On a utilisé

g(w) et € (w) sont perpendiculaires entre eux et perpendiculaires a k. 1ls ont la méme phase.
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On introduira un triplet (€1, €, 1)
E= (B &+ Ey &)
L1 . L
B=—kNE
w

E1, E5 peuvent étre complexes (avec une différence de phases).

2. Le spectre électromagnétique
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3. Polarisations linéaires, circulaires

On a trouvé une solution générale

k| =w/c
B = %/\E’

e Si les amplitudes ¢ et E5 ont la méme phase, la direction de E reste invariante dans
le temps. Il s’agit d'une onde polarisée linéairement. Le vecteur polarisation fait I’angle 0

avec F;
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0= AI’Ctg (Eg/El)
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Si les phases de Fq etFE; sont différentes. L’onde est polarisée elliptiquement.
e Cas |E1| = |E2|, E2 = +1 E1

—

E(Z,t) = Ey (€ £ &) eiF-d=wb
E, = Eycos(kz — wt)
E, = + Eysin(kz — wt)
E tourne 3 la vitesse w dans le sens positif ou négatif selon le signe choisi.

e De maniere plus générale, on peut se servir de

\/§€+:gl+i€2
V2E. =& —idy

comime états de base, avec les relations

L= (64 +)
€, = — (€ €_
1 /2 +
B = (6~ )
€= —— (€, —€_
SV
E=(E.& +E_¢)
= (F, — 2E2)/\/§
= (Ey+1iE2)/V2
E va décrire une ellipse : si E_/E, réel = r. Le rapport des axes est |1E2| avec g—; =r
et les axes sont €1, €5. Si r est complexe avec g—jr =71 €' les axes tournent de /2.

Lorsque r = = 1, on retrouve une polarisation linéaire.

Une onde monochromatique pure
est toujours completement polarisée (linéaire ou elliptique).
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4. Polarisation elliptique : le cas général

Toute onde plane est la somme d’une onde
avec polarisation circulaire droite et d’une onde gauche

Repere d’hélicité :

& + i@
& = % hélicité A= +1  droite
G = &

& —ia
e = 2 hélicité A= —1 gauche

V2
En mécanique quantique, la lumiere a un caractere de particules. Chaque photon a un
moment angulaire intrinseque droite ou gauche, sur hélicité J.@5 = +h, J moment angulaire
intrinseque du photon.
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On partira des composantes Fy et E_ :
E : .
E‘l‘ — r et E. = eta/2
Ey = r eta/?
1 o . .
E, = \/§ Re {e—zwt eza/2|E+| +€—zwt e—za/2|E_|}
1 o . .
Ey = \/5 I, {e—zwt eza/2|E+| _ piwt e—za/2|E_|}

On peut poser E = E; + iE5 dans le plan complexe :
E — e1'04/2 {|E+|e—iwt + |E_|€iwt}

Nous appelons X et Y les composantes de E dans les nouveaux axes :
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a a
X = —F in— FE
(:os2 1+sm2 2

Y:—Sin%E1+COS%E2

On voit directement dans les nouveaux axes qu’il s’agit d’une ellipse :

(X> _ (cos% +sin%> ( cos (wt — 2) |Ey| + cos (wt + &) |E_]| )

Y —sin § cos § +sin (—wt + £) |E4| +sin (wt + &) |E_|

2 2

X = cosg [(coswtcos§ +sinwtsing)|Ey|+ (coswtcos$ —sinwtsing) [E_|]
[
2

+ sing [(sin g coswt — sinwtcos ) |[Ey| + (sinwt cos ¢ + coswtsin §) |E_|]

X = |Ey|cos wt+ |E_|cos wt= (|E+|+ |E_|) cos wt
Y = —sin wt|Ey|+ |E_| sin wt= (|E_| - |E4|) sin wt

C’est la paramétrisation d’une ellipse. Le sens de parcours de ’ellipse dépend du signe de
|E_| — |E4| sens trigonométrique si |[E4| = 0.

5. Lumiéere naturelle
Une lumiere naturelle usuelle n’est jamais une onde plane pure. L’émission a toujours
un début, et des phénomenes physiques divers (vitesse de la source, diffusion par les milieux

interposés, etc ...) élargissent la distribution de fréquence. La phase et 'amplitude de I'onde
quasimonochromatique varient lentement.

On mesure des moyennes du type
< Ey* Ej >4= jap

Zjaa = Z| < |E%)? >1= 2puopc x flux d’énergie
«

(63
e Lumiere non polarisée naturelle

1
Ja,B - 5 J éaﬁ
e Lumiere completement polarisée selon EO
det J =0 = Jap = Eo* Ej

Ej est constant dans le temps.
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Cas général

Jap = M1 n(ll n[lg + Ao ni n%

(Axes principaux et valeurs propres)
Les effets physiques tels que :

e réflexion sur un plan,
e transmission par des cristaux,

permettent de produire ou d’analyser des faisceaux polarisés : le plus simple : biréfringence.

6. Lumieére partiellement polarisée

Distinguer :
e état de polarisation d'une composante monochromatique de 'onde e.m
e propriétés statistiques d’un faisceau lumineux (ou e.m).
Les propriétés statistiques d’un faisceau (selon OZ), cée par un mélange arbitraire de
composantes statistiques sont décrites par une matrice densité

(< E2>,<E,E, >

= — symétrie 3 parametres
P <<Ewa>t<E§>t> Y P

avec : E. — Re {E1 e,i(wt—kz)}

E, = Re{E,e iwi=k2)}

Il est avantageux de remplacer la matrice densité réelle, qui ne contient qu’implicitement
le déphasage moyen entre F, et E,, par une matrice densité complete, plus utilisée :

P=95\ < B,Er > < B2E5 >

1 (< E\Ef > <E1E§‘>>
2

le facteur % provient de < cos? wt >, si bien que
1 * 2 1 * 2
5 < E1E1 >=< Em > 5 < E2E2 >=< Ey >
<E\E}> = —ilE}|*+iE;E* — i E_E% +i|E_]?

i(|[E_>—|E4?) + i(ELE* —E_E})
= i(|E-|% —1?) +  i(2i Im (ELE*)

< E\Ej >=—21Im (ByE*) +i (|[E_|> — |EL|?)

Exemples :
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lumiere non polarisée :

lumiere polarisée Oi

lumiere polarisée Oy (8 (1))

lumiere polarisée linéant a 45°

Polarisation circulaire droite pour :

¢y=iE,—E,=E E,=iFE

1
<|Eg|? >= 3 E|? =< |E,|> > < E,E; >= —i |E|?

C|EP (1 i _|EP (1

- L’intensité lumineuse est Tr{p}.
- L’intensité transmise par un “filtre optique O” est tr{pO}.

7. Le flux d’'énergie (vecteur de Poynting)

Considérons des charges en interaction avec le champ :

dE .
= | JE&
dt / J e

(Travail des forces électriques pendant le temps dt avec f: pt)

= — |VAB- it
J Mo{ €oHo 8t}
On va utiliser
V.(EAB)=B.(VAE)—E.(VAB)
L. 1 - o o L 0E 1 _ OB
E = — — (ENB) - /E.———/B.—
/‘7 ! 1o ( )~ <0 ot po ot
dE - = oU 1 = - o
J— C:— '.Ed3 = —_— — .E B d3
dt /‘7 v /{8t+uov( " )} !

— dﬁc est 'énergie fournie par les charges
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) densité d’énergie du champ magnétique

_ 1 o 13
U—§(€0E2+EB2

flux d’énergie : vecteur de Poynting

dB, = %d?’m—kf S.it do

La relation trouvée exprime la conservation de I’énergie. Pour une onde plane la moyenne

temporelle du flux sera
1 - 7 &N *
ENNE)
2wto

S =

ol I'on a pris en compte le facteur < cos? wt >= %

Soit

J__ 1 e &
5= gl FEEY

—

(C’est le flux moyenné dans le temps de la partie réelle de E, B).
La densité d’énergie moyennée dans le temps U sera

1 e ]_ =

La vitesse du flux d’énergie est bien trouvée égale a (17 =c?P/E = %)

v=c= (Vo)
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