Il - Electrostatique des milieux diélectriques

1. Introduction

- Les équations de Maxwell sont toujours vraies.

- On va s’intéresser a des moyennes des champs locaux € et b sur des volumes
macroscopiques petits mais comportant un grand nombre de molécules.

- On ne s’intéresse pas aux variations locales rapides de € & DPéchelle de 1 A

- le volume doit étre assez petit pour que la variation de < & > soit négligeable.
De méme pour le champ magnétique

E(t,7) =

2. Développement multipolaire du potentiel

Le potentiel électrostatique créé par une distribution de charges
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Développement multipolaire
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Q = 0, Q¢ petit et le terme dominant sera en général

Pour des molécules neutres

3. Polarisation du diélectrique
Un diélectrique est un milieu neutre qui sera décrit par une distribution de dipoles élé-
mentaires (modele raisonnable) ou un vecteur polarisation représentant le moment dipolaire

de I'unité de volume.
Molécules élémentaires p(Z), densité p(Z)

dre, U(F) = ﬁ?f’i_fﬁ) pour 1 dipdle en Z
D < p(z) >

Pour une distribution de dipoles

dme, U(T) =

T — = . .
=V, <|_, 7 On peut le montrer directement en utilisant les coordonnées

ou se servir du gradient d’une fonction f(R(Z))
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on définira le vecteur P(Z) = p(Z) < p(&) >
(%) est la polarisation moyenne en Z des molécules

p est leur densité.
P le vecteur polarisation.

P est le moment dipolaire de
I'unité de volume en 7




ou 'on a utilisé

U se met alors sous la forme

S est la surface externe du volume diélectrique, 7 la normale.

Le potentiel d'une distribution de dipoles est le méme que celui
produit par la somme de deux distributions de charges (fictives)
- une distribution de volume de densité p = ~-vV.P
- une distribution de surface o = +P.7i

Les distributions de charges équivalentes fictives sont produites par les charges réelles
présentes dans le diélectrique
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on voit comment le champ uniforme E fait apparaitre des charges de surfaces P.i.
st Y =Y —

Dans un gradient de polarisation il n’y a pas compensation locale des charges.

Remarque : Le développement dipolaire n’était applicable qu’a grande distance
|7 — & >>a >> |Z|

et dans le diélectrique, nous 'appliquons a petite distance.

Dans un petit volume entourant 7 : p = —V.P est constant.
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Dans une sphere de rayon b >> a, ot a est la taille du dipole mais tel que (V.P)b << |P|

Le petit volume local ne contribue pas en symétrie sphérique

4. Le vecteur induction électrique D
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On définit le vecteur induction électrique D

D vérifie

—

o E+P

D=
V. D Préelles

A/ Dans un milieu isotrope

P= oXe(E ) ot E = champ électrique
Xe(E) : susceptibilité diélectrique

— D = ¢,(1+ x.(E))E

D= €€p E €: constante diélectrique




Si le champ E est variable et que € est fonction de |E_j |, € est fonction du temps, donc de la
fréquence.

Xe (ou €) sont des caractéristiques du milieu dépendant de la structure atomique.

B/ Dans un milieu anisotrope

La relation entre D et E restera linéaire si £ est assez faible

Di == 67;]' E]‘

€;; : réels, symétriques : tenseur diélectrique

1+ 2+ 3 =6 composants

3 : propriétés intrinseques

3 : orientation du milieu.
La plupart des cristaux devront étre décrits de cette manieére s’ils n’ont pas la symétrie
cubique. Il en résultera des propriétés de biréfringences dans la propagation des ondes
électromagnétiques.

5. Le champ local

La polarisation P est reliée a la valeur moyenne du dipble élémentaire. Celui-ci peut
s’exprimer a l’aide du champ électrique moyen et d’'un modele moléculaire, mais diverses
corrections sont nécessaires car c’est le champ local qui agit sur la molécule et il differe (en
général) du champ électrique moyen.

E = E, + E
champ externe champ de
moyen uniforme dépolarisation

(charges de surface lointaines)

E = E + SF (approx. dipolaire injustifiée dans le voisinage

et la molécule elle-méme doit-étre soustraite)
local champ correction de
agisst/molécule  moyen voisinage

On va revenir a la définition initiale pour évaluer 6 F




U= ij;’/|§;’|3 = fvois + fextérieur'
femt = f2surfaces
SF = 6sE + 6y E

Os E = contribution de surface

0y I = contribution de volume des atomes voisins.
E; dépolarisant correspond a la surface externe (déja prise en compte).

On remplace l'intégrale de voisinage par une » discrete/les atomes. Il reste a tenir
compte de la surface sphérique proche.

. Nous avons déja vu que pour une symétrie sphérique ou cubique Jy E =0.
.05 E peut étre calculé en fonction du vecteur P.

. Au centre de la sphere évidée
Od cost
dre U = —P / %Rz do

, 07
dreybs B = +P/ co}s%z n R? dy dcos b

P cos 0 est la densité équivalente de charge, 7 le vecteur normal unitaire.

En projetant sur P

. P p [t

e, 6SE'F = B cos @ cosf R? dcosf do
SsE = X L Pp=_
4re, 3 3€,

— g

EI ocal ~ EO + E 1 + %
externe depol. voisinage

(Dans un milieu isotrope, seule la composante locale ||P va contribuer). La somme E,+ E; =
E , ou E est le champ électrique dans le diélectrique tel qu’il résulte de 1’équation (2.1) qui
donne le potentiel, P /3¢, tient compte (approximativement) des effets de surface d’une cavité
sphérique creusée : € est alors le champ dans la cavité.
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6. Modele moléculaire

On décrira la molécule comme un oscillateur harmonique déformé par le champ externe
E,

Sous l'action de EO

Le dipole moléculaire élémentaire pour ’électron est alors :

o 2
— gRz =120
mw?

et pour les Z e~ d’un atome

_qZAxl_q Z fz €local

fi : force d’oscillateur est le nombre d’électrons sur le niveau i.
le vecteur polarisation : P = p(&)p’
p : nombre de molécules/unité de volume

3 I%

wT
j J

P = pym Ejpcal

(Elocal parce que la charge due a I’électron doit étre ignorée.)

— — — ﬁ — — —
P=e,xE=pym <E+3—) avec (E:EO+E1>
€o

Pl1- Pim ) _ pymE: eoxE" 1-— Pm
360 360
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On posera v = 1=

€o

p : nombre de molécules/unité de vol

v = Jm coefficient de pol. moléculaire diélectrique.
€o

En introduisant la constante diélectrique relative : e =1+ x

e—1=

pv<1+%(6—1)> =e—1

Relation de Clausius Mossotti.

En particulier comme « est une C* :

T doit étre proportionnelle a la densité du
€
matériau.

La relation est bien vérifiée pour les milieux dilués (gaz), moins bien pour les liquides et
solides, surtout pour € grand. Notons que nous avons négligé I'interaction des dipoles proches
(hypothese de symétrie sphérique).

7. Conditions aux limites

e On a déja vu que

Reste vrai a une interface diélectrique.
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On ne peut plus utiliser V.E = % mais
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les charges de volume p = —V.P et les charges de surface ¢ = P.n n’apparaissent pas
directement comme sources de D.

— pour des diélectriques neutres (cas usuel) V.D = 0

— la composante normale de D est continue (Théoreme de Gauss)

D.ii(1) = D.it(2)

8. Application a la sphére diélectrique

On recherchera la solution ou la polarisation est uniforme (comme il n’y en a qu’une, c’est
la seule).

A Textérieur, pour r > R, la sphere apparalt comme un dipbéle de moment dipolaire

p= —7TR3P (P est le moment dipolaire total, P le vecteur polarisation)
. o 4 3(P.7)7 — r2P
E E x —mR?
ext ot 4e, 3" r5

ol P est le vecteur de polarisation diélectrique

, _ R\’ 1 (3(P.f)7—r2P
Eei=E,+(=] —
ext + ( r > 3¢, ( 2

r

le champ interne résulte d’'une polarisation P uniforme : seule la surface contribue, et comme
il s’agit d’un diélectrique plein et non d’une cavité, I'effet de P est dépolarisant.
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vérifions les conditions limites & 8 = 0

3E,
Eint = 3775
2 1
Bae=E, (1+ X ) =3(-7X) E,
3+ x 3+x
— — — 1
Dint = €6 Eing + P =€, E, (Si +3? >:331X60E0
X X X

— — 1
Dewt - Eo Eewt =3 <ﬂ> €o Eo
3+ x

On a bien la continuité de la composante normale de D.
On vérifie la continuité de la composante tangeantielle & 0 = 7/2.

Eing = Lo 50—

Eext = Eo — a = Eint

Remarque : la solution pour le potentiel de I'ellipsoide diélectrique est, pour une sphere :

. 1 P.7
[]6 — —EOF+ 3— —3
5 €o T pour retrouver ce résultat
Ut =" (E,7)

Ut = —E,i+ A=~ r>R
U'=-B(E,7) r<R

seule solution réguliere linéaire en F,, et on impose le continuité.
Les conditions aux limites peuvent ainsi s’exprimer de deux facons équivalentes :

— continuité de U
— continuité de D, (ou E,)
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9. Energie électrostatique

Pour amener une charge normale au potentiel U
SW :/ Sp U dPa = / (6.55) U d*z

/ V.(0D) UdPx — / .(USD) d®x
- / 6U.513) d3

SW = / U(éﬁ.ﬁ) do + / E0D d*x
S

S|

)

L’intégrale de surface se va pas contribuer pour une configuration réaliste ou U — 0 (

5D — 0 (%) Il restera :
T

SW = [E.0D d3z

Si la relation entre E et D est linéaire, I'énergie électrostatique Wel est donnée par :

We =1 [E.Dds
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