XII - Guides d’onde - Lignes

1. Suite de mailles identiques

On considere toujours des potentiels et courants périodiques

(A {a{a]

L’impédance globale du circuit (I = U/Zj) se calcule par itération :

1 Z / VA
Zo=Z1+—+—1 = Zo= —+ \|Z1Z2+ —*
=+ 2 4

et si Z1, Z> n’ont pas de partie résistive :

prenons par exemple Z; = iwlL Zy =1/iwC

1 | L 1
Ly = EiwL—k 6—w2L2/4 = 5iwL+Zc

Z. est I’ impédance caractéristique.
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o Siw? < % Zc réelle = il n’y a pas absorption d’énergie : chaque élément est imaginaire

pur, mais il y a atténuation sans dissipation par réflexion/mailles

o Siw? > % Z¢ réelle = pas d’absorption aux grandes fréquences (pas de propagation).

[ ] = —— 6
W= s est la fréquence de coupure

Exercice : Trouver une solution I; = C(q)*

2. Ligne de transmission

[©

(éléments de conducteurs avaec invariance/translation)

I (x) I (x+Ax)
U (x) U (x+AXx)
X (x+AX)

L = inductance/unité de longueur

C' = capacité/unité de longueur

ol
V(z+ Az) = V(z) = — (LoAx) 5% (®=1LI)
ov
I(x + Az) — I(x) = — (CoAx) 5 (Q=CV)
92V o’V
o927 = Colo
921 %I
T
Equation des ondes avec v = \/ﬁ = ¢! (voir plus loin p. 11. Ondes Tranverses Electro-

Magnétiques.

V(z,t) = f(x—ot) ou g(x+vt) = Voe—iw(t_%)
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2 ondes peuvent se propager
V_|_ - Z() [_|_

Vo=2p1_

[Lo . e
Zoy = 50 impédance caractéristique
0

V. L w . V.
(8—;:Z;V+: +'LLCUI+:>ﬁ:LU>

Pour un conducteur coaxial

_ Logb/a _ 2me 1
Lo = 2meqgc? Co = Log (b/a) LoCo = c?
_ Log (b/a)

Zy 60 Q pour Log b/a = 1 (voir paragraphe précédent)

2mege

Attention : L, Cy impédances par unité de longueur.

3. Le guide d’ondes

On s’intéresse a la propagation des ondes électromagnétiques dans des cylindres creux, de
section transverse circulaire, rectangulaire, ou quelconque. La ligne examinée précédemment
en est un cas particulier. Ce sont les différents éléments de la paroi qui vont permettre
I’apparition d’impédances distribuées. On supposera les conducteurs parfaits.

= pas de résistance,
= pas de pénétration des champs (voir Chapitre XIII),
= champs électriques normaux.

Les dépendances temporelles sont supposées sinusoidales e~*?

05 _ _$rE
ot

8E ]_ = — — —
— = VAB=cVAB
ot eopo



Guide cylindrique ou rectangulaire.

A cause de la géométrie cylindrique on cherchera des solutions du type

E(.’L‘, Y, 2, t) — E(.’L‘, y)ezl: i(kz)—iwt
é(m,y,z,t) — E(x,y)ei tkz—iwt
(<= transformée de Fourier z — k)

0? 0? 0? 0? 0?
0x? + 0y? + - + 0y?

= A= —k*= Ay — K

022 0x2

2

o (54 -

On va distinguer les composantes transverses et longitudinales :

—

E :EZ —f-Et - ggEz —f-Et

é :§z+§t - 53Bz+§t
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Les équations de Maxwell peuvent étre décomposées en utilisant

>
<1
b
Il
5‘
>
=
S
=
Il
S
>
=
>
DL

(V

inz = (6,5 VAN Et).gg

0B 5 5 OF
= TiwdA(EADB) = N (vth— a—;)
w = 5\ =
e 1 6—263 A (€3N Ep) = —€3 A (Vth - E)
Soit en simplifiant les produits vectoriels
—i%E, = (Vi A B)).d —i%(@ N E) ==V, B. +
VB, + 28 = VB + 2B =

= si I, et B, sont connus et que la solution est bien de la forme
E' et t(kz)—iwt B' et t(kz)—iwt
les vecteurs Et et Bt peuvent étre calculés et sont donc déterminés.

En utilisant la dépendance spatiale en e**? les relations précédentes peuvent étre trans-

formées en une paire d’équations qui va nous permettre de classer les solutions en types plus
simples.

Z<_2_k> 63/\Bt: —2Vthik63/\Vth
C C

. 2
!_2 (—L‘C)—2+k2> ésNFEy= wViB,+ kés ANV E,
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et en multipliant vectoriellement par €3

B = #53/\ _%6th:Fk53A6th]
e L

— ic2 B — —

Bi= gy 6N WV B, k5 AV, E |
ol I

La solution générale peut étre construite en combinant linéairement des solutions ayant
E, =0ou B, =0. Dans certains cas particuliers, une solution ¥, = B, = 0 sera permise.

On notera le cas particulier de la propagation dans le vide : pour k% = “CJ—; (onde plane)

les équations écrites sont automatiquement satisfaites.

A/ Les ondes Transverses Electro Magnétiques (TEM)

Les ondes transverses électromagnétiques sont les plus “naturelles” que 1’on puisse recher-
cher : elles ont des champs électriques et magnétiques perpendiculaires a la direction de
propagation, comme 'onde plane

EZZO et BZZO

Les équations de Maxwell impliquent alors (E = Erg M, B = Brg M)

ViABrem = ViAErgy =0

Vi.Brem = ViErgy =0

ViNErpny =0 = Erpy = —Vibreu
ViErgy =0 = AiprEM =0

0 = la surface est une équipotentielle

ENii= ace.
ii.B =0 (Gauss et V.B = 0)

—

e FErpa est solution d’un probleme électrostatique

e [’équation [At + (“g—z — k2>] {g} =0

. . 2 .
implique alors k2 = “7, comme pour une onde plane dans le vide

k est réel Vw
(pas d’absorption)
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e B et E sont reliés par

dB _ _ n
9t kB, =+iYB,=—i Y e A E
0z c c?
:l:ikz‘

ETEM = *+ % €3 A\ ETEM selon le signe de e

e Les champs Brgy, ETgy sont orthogonaux,

e Les ondes T'EEM ne peuvent pas exister dans un cylindre creux “simplement connexe” :
tuyau ou rectangulaire infini (de conductivité infinie). En effet, la surface du cylindre est
une équipotentielle, et 'on peut supposer V' = 0. La seule fonction harmonique A¢ = 0
satisfaisant, ¢ = 0 sur un contour fermé fini est ¢ = 0 s’il n’y a pas d’autres surfaces fermées
limites.

Il faut avoir au moins deux surfaces (Exemple : ligne coax.) pour avoir une onde TEM.

b\
L\
e kB w
27 2me

Variation en z.
B/ Ondes transverses magnétiques, ondes transverses €électriques

Dans les deux cylindres creux, on a vu que la solution générale peut étre construite a partir
de 2 types de configuration de champ. Pour des parois parfaitement conductrices

ﬁ§|s = 0, compte tenu de V.B = 0 et du théoreme de Gauss
i AE|s =0 (E normal).
Edl= (Ey— E)AL T

= /(%xﬁ).ﬁda: - %—l:.ﬁdo: — ShAL

0B
ot

quand dh—0

= disc (Et) =0
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o A la surface E,png = 0 et disc (Et) =0=

E,s=0
SN
E,
En outre, (€3 A @1).E; = 0 (E normal).
o I equatlon z(‘}"—z (* AE ) vV, B — aalzt entraine par projection sur 7

e Le membre de gauche est nul (E normal) et 7.5, = 0

on s

0B,
on ‘s_ 0

Les conditions aux limites sont donc

Ez‘s =0 et o

avec 1’équation de propagation
w? E
2 _
2o ()] ) -0

A w fixé, seules certaines valeurs de k seront possibles (modes propres) dans un guide d’onde
(& k donné, seulement certains w pour une cavité).
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Comme les conditions aux limites different pour Eet B , les valeurs propres seront différentes.

Ondes transverses magnétiques (TM)

B,=0 partout Ez‘s =0

Ondes transverses électriques (TE)

0B,
E,=0 =

on ‘s_

partout

B/1 TM Transverse Magnétique (B, = 0)

, - 0B
—’L %(53 A Et) - —Vth t
c

(Nécessité de la distinction TM/TE rot (By) # (rot B),).

Comme B, = 0, il en résulte une relation entre Et et Bt

— w - —
Bt: :t? (63/\Et)

Cette équation permet de relier les champs transverses et longitudinaux

—

— =g w —
(63/\Bt): :i:—(—Et)::F Et

9
o
e

= . OF
+’LLU(63/\Bt): Vth— t

0z

2k = Vth:F’LkEt
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B/2 TE Transverse Electrique (E, = 0)

De méme iw(@ A By) = V, B, — 2Bt — _ (4)ik E,
Oz

i 2 (& ANEy) = VB, — (+)ik B, mais B, =0(TE)

w —
i 5 (; EBt) = V,B, + (¥)ik B,
TE
— ’l{; —
Bi=+—— YV, B,
w_ _ k2
C2

Pour résumer :

e Les champs transverses peuvent dont étre obtenus a partir des champs longitudinaux.
On définit

w2

v==5—-k , ¢y=E, ou B,
C

comme (%) vérifient (A; + v?) {g} =0
A+ =0
avec les conditions aux limites
0B, 0
S /ll) S o 8n S 8” S
(TM) (TE)

110



C’est un probléme de valeurs propres. Les solutions vérifient v2 >> 0 (1 doit osciller).
A w donné, plusieurs 7y, permises.

Remarque : On a écarté 'inspection des solutions E, # 0 et B, # 0: ce n’est pas nécessaire.
Il suffit de combiner TM et TE.

Pour le mode A

€
N
| =

ki =——7 wx=cn kAZC

kx sera toujours inférieur a sa valeur k = ¢ dans le vide.

wy est la fréquence de coupure pour un mode donné : si w < wy l'onde ne se propage pas
(mode évanescent).

cky

W] Wy W3] Wy o

3 modes permis pour w = w'.

La vitesse de phase :

La vitesse de phase est toujours > ¢ dans un guide d’onde. Elle devient infinie a la
fréquence de coupure.
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C/ Le guide d’onde rectangulaire

y
b
< a > X
0? 0? 9
7 =0
<ax2 ot > v
On va chercher la solution (T'E)
op . [x=0,a
%—Oa {yzo,b} pour B,

1 représente B, avec E, = 0.

Yn(w,y) = BY cos

mmnx
COS
a
2 2
m n
2,2
= (52

m2  n?

Wmn =CT a—2+b_2

Soit a le plus grand des cotés a > b. La plus basse fréquence de coupure TE est

m=1,n=0, wyo=

TE(1,0) B, = By cos (E) eilkz—wt)
a

By = — % B in (E) gilhz—wt)
T a

E, =i 2% B" sin (E) gikz—wt)
CTr a

Il y a une différence de phase de 90° entre B, et B,. Le mode T'E o a la plus basse fréquence
de coupures des modes T'E, T M et est souvent choisi : on peut travailler a plus basse
fréquence.
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D/ Flux d’énergie
Le flux d’énergie sera donné par la partie réelle du vecteur de Poynting

S= —(BEnB) — <8>= 2 Re {(EAE*)}

1
Ho
(Exemple de I'onde plane < S >= L EAB < cos?wt >= 51 (EAB))

Pour les champs TM et TE :

N
<
o~
=
N ¥
——

. d_ €3 k {"
TM:<S>= o8- - 23 (Ve P

TE:<§>= 2630 %;"5 {ﬁt BzﬁtB;}

w2

avec 2= —2—k2
¢

On peut calculer l'intégrale :

P = / S . &ydo A = section du guide

P= gty [ (G (Fei)do

19,E,
o= {551 pow (3

a Daide du théoreme de la divergence : [V.Vo = — [ uAv+ [ div (uVv)

= = * _ * 81/) *
[ GGy dr = [ wr SR [ s ao
=0

(conditions aux limites TE ou TM) mais App = — v*

e on (M)

2u(m
2 w? 12 wi k w? Wi
Y= 3 —Rx = —3 = 3 T 3
(32 02 02 02
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La densité d’énergie u est

o k2 )
<E}>= o ViE, V.E*
’
— u}2
<B?>= P < By >2 )
On doit ajouter
5 (eo < E’z2 >) = —eF,E}

1 11
— = - — B,B;
2 o 4 o
R +w2 11
44 0T 2 )2 1
k2 2
u = @ 0 <1+ 2]{}2) (VtEZ VtEg)
€0
— E.E;
+ 1 »

et, de maniere analogue

avec la méme définition

C2k260

4y

u =

2k

et pour I’énergie par unité de longueur Cfi—g

dU k2
dz 44
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TM

(TE)

w? e
: <1+ ﬁ> V.V *




et la méme transformation que précédemment aboutira a

dU  *k%e 5 7 w? 2e¥ w2
e A AT
dz 44 <7 + k? * k22 > /A Vi do 292 \¢ A

P wk 2v2 ok 5 k w?
w

dU/dz — 2m07* 2 (2)°  poweo -

P dw " d
_— = = — = esse de (0] (§]
avjdz~ 0T aw sroup

k= w?—wi — Pkdk = wdw

do _ 2k, - P
dk w Y dU/dz
On vérifie également la loi usuelle
k w
_ 2k W 2
Cplg = €~ X . c
Vplg = c?
AU=S Azu
. Az=vg At R
p Aw SAzu dU
= — = = -
ot At 7 dz
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