Annexe | - Technique des fonctions de Green

Les fonctions de Green sont les solutions des équations précédentes pour des sources
ponctuelles

p(Z) = qds (¥ — &)
ou p(Z, t) = qds (& — o) 6(t — to)

Mais elles ont été établies bien avant I'introduction de la “distribution de Dirac”. Nous
adopterons successivement la méthode historique, qui permet des rappels utiles, et 1’étude
directe a partir de la fonction §.

1. Le Théoreme de Green

Soient deux fonctions u et v sans singularités dans un domaine D limité par le contour 0D

/ (vAu — uAv) d"w = / (WVu —uVv) . 7dd" tw
D oD

d"w et d""'w sont les éléments d’intégration & n et n — 1 dimensions (n = 2, 3)

Volume : / (vAu — ulAv)dV = /(Uﬁu —uVv). i do
\%4 S

Surface : /(UAu —ulAv)dS = /(vﬁu —uVv). i dl
S c

La démonstration est une application directe du théoreme de la divergence.

Par exemple a 3 dimensions.

=

div (vVu) = Vv.Vu+ (vAu)
div (uVv) = Vu.Vu+ (uAv)
/div (vVu — uVv) dz = /(UAU, —ulv) d*x

Remarque : Est-il 1égitime d’appliquer le théoreme de la divergence en présence de charges
ponctuelles ?
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2. Potentiel d’'une source ponctuelle

Utilisons le théoréeme de Green :
AU = —p/eg v=1

e Pour une configuration a 2 dimensions réalisée concretement par un fil 1L plan :

/AUda:/(ﬁU.ﬁ)dﬁ
S c

en choisissant un contour circulaire de rayon py contenant la totalité de la charge @), centré
sur la charge en ) = 0

p=Qaa() [ —pdr = -2 2y U

€o

En un point a la distance r de la charge

ou = @ U(re) —U(r) = — log —=

or B 2megr

(on n’a pas vraiment supposé la source ponctuelle, le passage a la limite est évident).

e Pour une configuration a 3 dimensions ; avec une sphere de rayon py centrée sur la charge
en79=20
oU

/AUdv:/(ﬁU.ﬁ)da N
1% S 87"

~ Ampd

Po

—Q
dmpo

i est normale externe a la charge. On obtient ainsi U(oo) — U(pg) = et on choisit en

général U(oo) = 0. On conclut que A (ﬁ) = —47m 3 (T — 70).
=70

Cette méthode, adaptée au Laplacien, ne sera pas utilisable pour I’équation des ondes.

Nous en indiquerons une autre.
4»
n
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3. Résolution de I'équation du Laplacien

Choisissons v = G(7, 7y) fonction de Green associée a une source ponctuelle en rg

€0
/{G(* Vu—ux 0T | ay
r,Tr uUu—1u — S5 QSa | - aoc
oD ’ dm (7o —71)°

e Si la densité de charge est confinée dans un volume fini, le potentiel u décroitra suffisamment
rapidement pour que le volume D soit étendu a l'infini.

La contribution de I'intégrale de surface 0D est alors nulle.

_ 1 p(To) -
4 = e D|77—770|alr0

est la solution de AU = _%

A condition qu’il n’y ait pas de charges a l'infini (pas de termes de surface).

Exemple : considérer le potentiel d’un fil infini.

4. Résolution de I'équation des ondes

a) Recherche de la fonction de Green.

1 02 . . L
{0—2 at A} G, t3 &, 1) = 4m 3y (T — &) O(t — 1)

se résout par transformations de Fourier successives.

—

L’invariance par translations (temps, espace) = G(&, t; &, t') = G(€, 1)

avec E=7-7 T=t—t
1 92 o -
?W_AS G(§, 1) =4md3(£)6 ()

On procedera par transformation de Fourier en deux étapes,

- 1

e t — w G(&, T):%/e_iw g(g,w) dw
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{A+ ‘C"—;} 9(€ w) = —4m 5(¢)

On a utilisé §(t) = % /e_i“’t dw et identifié les composantes w.

pour les composantes monochromatiques de la fonction de Green. G étant supposée réelle :
9(w) = g*(-w)
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gk, w) = —=41
k24 ll
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C

(Par transformation de Fourier : équation différentielle — relation algébrique).

On retrouve maintenant G (¢, 7) par transformation de Fourier inverse

- 1 —wT ik . € am
G(&,r)zw/e dw/e“ﬁﬁdkm
ke —

o §

c

- Intégration sur ¢ — 27
- Intégration sur dcosf : /e+ikR s 7 cos 6

1 7 —1
:ﬁ(ekR_e kR) R:|

_I]

o0 oikR _ ,—ikR 1
- Intégration sur k : / k2dk [ }
—w

0 ikR 0% | g2
c
] 871'2 oo esz 1
. —tkR
(chgt var : k/ — k pour e ) W /_oo kdk iR o R



L’intégration sur I’axe réel est impossible a cause des poles en
k=xw/c:

on va calculer g(E, w) pour des valeurs complexes de w et prendre la limite.

w woo.
— — — *ue
c c
w w
— 81 — — — + 1€
c c
A
Im(k)
w/ctie
°
Re(k)
°
w/c-ie
* AT N w .
g(—w) =g¢"(w) — autrepoleada — — —ie
c

L’intégrale de contour doit étre fermée dans le 1/2 plan supérieur, compte tenu du facteur
e B Seul le pole k = % + i€ contribue

1 1 w etck
R)= —— x 872 x 2i — | —
g(w, R) o) X 8% X 24w X 72 (C = )
+ikR
Jr (w’ R) = € R avec k == %

Correspond a une croissance temporelle du signal (décroissance radiale)
. w W .
— 8l C — C 1€

L’intégrale doit toujours étre fermée dans le 1/2 plan Im(k) > 0, mais seul le pole
k = —% + te contribue

—ikR
ga(w, R) = ¢ ye avec k=

o€

Correspond a une décroissance temporelle du signal (décroissance radiale) les indices a
(avancé) et r (retardé) vont étre justifiés.
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b) Fonctions de Green avancées et retardées.

Repassons a ’espace (E, T) :

o 1
G.(& 1) = —5(7’ — E) fonction de Green retardée

c

o 1
Go(&, 7)= =0 (7’ + E) fonction de Green avancée

une solution est causale si elle est nulle pour des temps plus petits que to + R/c ou ty est
I'instant du ler signal.

c) Solutions de I’équation des ondes.

La solution générale de 1’équation des ondes inhomogene

1 92

c? 0t?

sera la somme de la solution générale de I’équation homogene et d’une solution particuliere
de I’équation inhomogene.

La fonction de Green retardée peut étre utilisée pour construire une solution “causale”,

mais I’emploi de I'un ou 'autre type est lié aux conditions aux limites et les deux sont
bien entendus légitimes.

10(57 t) - A¢ = 47Tf (f7 t)

En particulier : non unicité des fonctions de Green : on peut rajouter a G g vérifiant
9g=0.

Une solution particuliere est construite comme précédemment avec la fonction de Green.
Vg, (T,t) = /GZ (Z,t; Z,t) f (&, t) d®c'dt’
(décroissances supposées rapides a 'infini)
= Y (Z,t) = Pin (T, t)+/G"(a?,t; ) f (@) 37 dt

9¢zn:0
v = Yy, t — —00

B (@) = Yous (7,1) + / GO (@t &8 (@ 1) P dt
1/) — d)out t — +oo
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Remarque : en w = w + ie on a trouvé g, = e*%/R
G — e ilwtie)t ez’(w+ie)§
— 6—i(wt—%) 6e(t—R/c)
ne contribue que si ¢t > R/c = retard
De méme G = e—i(w—is)t e—i(w—is)R/c

—i R — R
—e 1(wt—|—c)e e(t+ )

ne contribue que si t < —R/c = avance

On peut montrer qu’en ’absence de charge a l'infini, 1;, = 0 pour des solutions dont
I'énergie est finie. (De méme t),y;).

Attention : Théoreme de Green a 4 dimensions. Pour retrouver 1 a partir de ses valeurs
dans des volumes a temps défini.

onde incidente
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>
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y, > cikz
t —» -oco

d) Equation des ondes inhomogeénes.

On revient aux deux équations

1 8 L . 17 afe - 10U
(C—Z%—A>A:9A:—Z—V<V.A+——>

2
(1 4 —A>U:9U:ﬁ+12 <V.A+18—U>

2 o2 € cOt c Ot
en “jauge de Lorentz” V. A+ —-——=10
c Ot
(0, . A =0)
1
.17 9 A= —7"
9A:—0— 0
€’ c u U
o = P = (p, pc>
€o
o' =0



e En ’absence de contribution des surfaces a I'infini, le résultat sera donné par les expressions
usuelles :

4

U(ff, t) = / — _’/| dgf/

r—

| — &

1 j(a?’,t— - )
T 3 =/
A(Z,t) / =7 d°x

r—x

e La condition d’énergie finie a t = ¢4

o\ 2
w=2 [ B2q3s = 6—0/ a0 L0AY s
2 2 Jizy, c Ot

assure que A et 9,A°(= —V . A) sont finis.

L’intégrale de volume est alors nulle pour

. Max |# — &'
|Z| >t + ———

Formalisme covariant

—,

A* =(U, A) xt = (ct, T)
Oy = 0/0z" " = g'vo,
FrY = grAY — 9" AV
B — _ i — fi0

B' = ——e¢;p FF

7 =(p, )  T=pv
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